

PCF8811

80 x 128 pixels matrix LCD driver Rev. 05 — 29 June 2010

Product data sheet

General description 1.

The PCF8811 is a low-power CMOS¹ LCD controller and driver, designed to drive a graphic display of 80 rows and 128 columns or a graphic display of 79 rows and 128 columns and an icon row of 128 symbols. All necessary functions for the display are provided in a single chip, including on-chip generation of the LCD supply and bias voltages, resulting in a minimum of external components and low power consumption. The PCF8811 can interface microcontrollers via a parallel bus, serial bus or I²C-bus interface.

Features and benefits 2.

- Single-chip LCD controller and driver
- 80 row and 128 column outputs
- Display data RAM 80 × 128 bit
- 128 icons (row 80 can be used for icons in extended command set and when icon rows are enabled)
- Low power consumption; suitable for battery operated systems
- Interfaces: an 8-bit parallel interface, 3 or 4-line Serial Peripheral Interface (SPI) and High-speed I²C-bus
- On-chip:
 - ◆ Configurable voltage multiplier generating LCD supply voltage V_{LCD}; an external V_{LCD} is also possible
 - Linear temperature compensation of V_{LCD}; 8 programmable temperature coefficients (extended command set); one fixed temperature coefficient which can be set as default by OTP programming (basic command set)
 - Generation of intermediate LCD bias voltage
 - Oscillator requires no external components
- OTP calibration for V_{LCD} and accurate frame frequency
- External reset input pad
- External clock input possible
- Multiplex rate: 1:16 to 1:80 in steps of 8 when no icon row is used; with the icon row, steps of 16 can be used
- Logic supply voltage range V_{DD1} to V_{SS}:
 - ◆ 1.7 V to 3.3 V
- High-voltage multiplier supply voltage range V_{DD2}, V_{DD3} to V_{SS}:
 - ◆ 1.8 V to 3.3 V

The definition of the abbreviations and acronyms used in this data sheet can be found in Section 22.

80 x 128 pixels matrix LCD driver

- Display supply voltage range V_{LCD} to V_{SS}:
 - ◆ 3 V to 9 V
- Programmable bottom row pads mirroring; for compatibility with both Tape Carrier Packages (TCP) and Chip-On-Glass (COG) applications (extended command set)
- Status read, which allows for chip recognition and content checking of some registers
- Start address line which allows, for instance, the scrolling of the displayed image
- Programmable display RAM pointers for variable display sizes
- Slim chip layout, suited for COG applications
- Temperature range: T_{amb} = -40 °C to +85 °C
- CMOS compatible inputs

3. Applications

- Automotive displays
- Telecom equipment
- Portable instruments
- Point-of-sale terminals

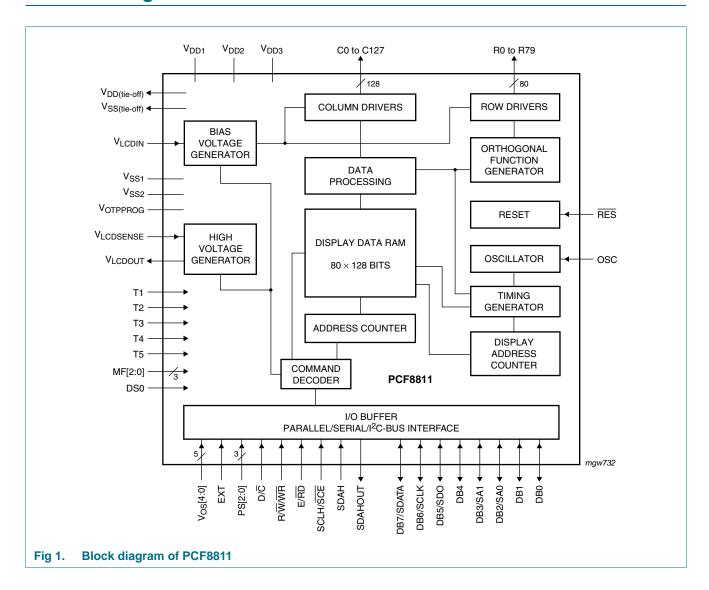
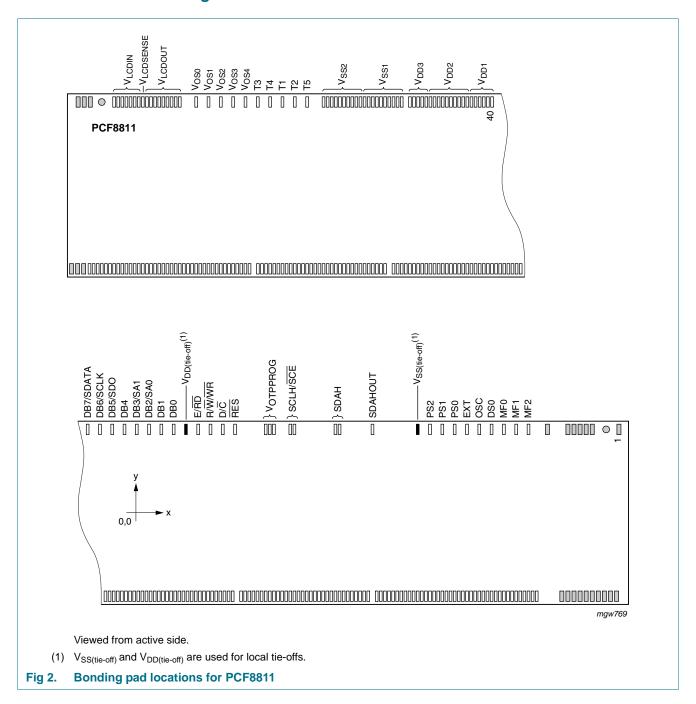

4. Ordering information

Table 1. Ordering information

Type number	Package					
	Name	Description	Version			
PCF8811U/2DA/1	-	chip with bumps in tray (not covered by Motif license agreement)	-			
PCF8811MU/2DA/1	-	chip with bumps in tray (sold under license from Motif)	-			

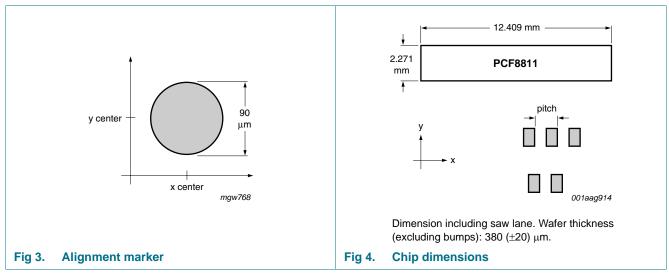
80 x 128 pixels matrix LCD driver


5. Block diagram

80 x 128 pixels matrix LCD driver

6. Pinning information

6.1 Pinning



80 x 128 pixels matrix LCD driver

Table 2. Pad allocation table

Pad	Symbol	Pad	Symbol
1 to 8	-	38	DB6/SCLK
9	MF2	39	DB7/SDATA
10	MF1	40 to 45	V_{DD1}
11	MF0	46 to 55	V_{DD2}
12	DS0	56 to 60	V_{DD3}
13	OSC	61 to 70	V_{SS1}
14	EXT	71 to 80	V_{SS2}
15	PS0	81	T5
16	PS1	82	T2
17	PS2	83	T1
18	$V_{SS(tie-off)}$	84	T4
19	SDAHOUT	85	T3
20 and 21	SDAH	86	V_{OS4}
22 and 23	SCLH/SCE	87	V_{OS3}
24 to 26	$V_{OTPPROG}$	88	V_{OS2}
27	RES	89	V_{OS1}
28	D/C	90	V_{OS0}
29	R/W/WR	91 to 99	V_{LCDOUT}
30	E/RD	100	$V_{LCDSENSE}$
31	$V_{DD(tie-off)}$	101 to 107	V_{LCDIN}
32	DB0	108 to 114	-
33	DB1	115 to 154	R79 to R40
34	DB2/SA0	155	R79[1]
35	DB3/SA1	156 to 283	C0 to C127
36	DB4	284 to 323	R0 to R39
37	DB5/SDO	324 to 333	-

^[1] Duplicate of R79.

PCF8811_5

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

80 x 128 pixels matrix LCD driver

Table 3. Bonding pad dimensions

Pad	Row/Column side (μm)	Interface side (μm)
Pad pitch	51.84 min	54.0 min
Pad size (aluminium)	42.84 × 105	50 × 100
Bump dimensions	29.9 × 98.5 (±3)	32.2 × 93.5 (±3)

Table 4. Alignment marker position[1]

Pad	Χ (μm)	Υ (μm)
2	5995	1017
108	-5904	1017

^[1] For the position of each pad, see <u>Table 5</u>.

6.2 Pin description

able 5. Bonding pad description

All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

Symbol	Pad	Χ (μm)	Υ (μm)	Description
-	1	6092.00	1030.00	dummy_slanted
-	2	5995.00	1017.00	alignment mark
-	3	5876.00	1030.00	dummy
-	4	5822.00	1030.00	dummy
-	5	5768.00	1030.00	dummy
-	6	5714.00	1030.00	dummy
-	7	5660.00	1030.00	dummy
-	8	5390.00	1030.00	dummy
MF2	9	5012.00	1030.00	manufacturer device ID input
MF1	10	4850.00	1030.00	manufacturer device ID input
MF0	11	4688.00	1030.00	manufacturer device ID input
DS0	12	4526.00	1030.00	device recognition input
OSC	13	4364.00	1030.00	oscillator input
EXT	14	4094.00	1030.00	extended command set input
PS0	15	3932.00	1030.00	parallel/serial/I ² C-bus data selection input
PS1	16	3770.00	1030.00	parallel/serial/I ² C-bus data selection input
PS2	17	3608.00	1030.00	parallel/serial/I ² C-bus data selection input
$V_{SS(tie-off)}$	18	3446.00	1030.00	for local tie-offs
SDAHOUT	19	2960.00	1030.00	I ² C-bus data output
SDAH	20	2420.00	1030.00	I ² C-bus data input
SDAH	21	2366.00	1030.00	I ² C-bus data input
SCLH/SCE	22	1826.00	1030.00	I ² C-bus clock input or chip enable active LOW (6800 interface)
SCLH/SCE	23	1772.00	1030.00	I ² C-bus clock input or chip enable active LOW (6800 interface)
V _{OTPPROG}	24	1664.00	1030.00	supply voltage for OTP (can be combined with SCLH/SCE)

Table 5. Bonding pad description ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

Symbol	Pad	Χ (μm)	Υ (μm)	Description
$V_{OTPPROG}$	25	1610.00	1030.00	supply voltage for OTP (can be combined with SCLH/SCE)
V _{OTPPROG}	26	1556.00	1030.00	supply voltage for OTP (can be combined with SCLH/SCE)
RES	27	1448.00	1030.00	external reset input
D/C	28	1232.00	1030.00	data or command active LOW input
R/W/WR	29	962.00	1030.00	read or write active LOW input (6800 interface)
E/RD	30	800.00	1030.00	clock enable or read active LOW input (6800 interface)
V _{DD(tie-off)}	31	638.00	1030.00	for local tie-offs
DB0	32	476.00	1030.00	parallel data input/output
DB1	33	314.00	1030.00	parallel data input/output
DB2/SA0	34	152.00	1030.00	parallel data input/output or I ² C-bus slave address input
DB3/SA1	35	-10.00	1030.00	parallel data input/output or I ² C-bus slave address input
DB4	36	-172.00	1030.00	parallel data input/output
DB5/SDO	37	-334.00	1030.00	parallel data input/output or serial data output
DB6/SCLK	38	-550.00	1030.00	parallel data input/output or serial clock input
DB7/SDATA	39	-712.00	1030.00	parallel data input/output or serial data input
V_{DD1}	40	-874.00	1030.00	supply voltage (logic)
V_{DD1}	41	-928.00	1030.00	supply voltage (logic)
V_{DD1}	42	-982.00	1030.00	supply voltage (logic)
V_{DD1}	43	-1036.00	1030.00	supply voltage (logic)
V_{DD1}	44	-1090.00	1030.00	supply voltage (logic)
V_{DD1}	45	-1144.00	1030.00	supply voltage (logic)
V_{DD2}	46	-1198.00	1030.00	supply voltage for the internal voltage multiplier
V_{DD2}	47	-1252.00	1030.00	supply voltage for the internal voltage multiplier
V_{DD2}	48	-1306.00	1030.00	supply voltage for the internal voltage multiplier
V_{DD2}	49	-1360.00	1030.00	supply voltage for the internal voltage multiplier
V_{DD2}	50	-1414.00	1030.00	supply voltage for the internal voltage multiplier
V_{DD2}	51	-1468.00	1030.00	supply voltage for the internal voltage multiplier
V_{DD2}	52	-1522.00	1030.00	supply voltage for the internal voltage multiplier
V_{DD2}	53	-1576.00	1030.00	supply voltage for the internal voltage multiplier
V_{DD2}	54	-1630.00	1030.00	supply voltage for the internal voltage multiplier
V_{DD2}	55	-1684.00	1030.00	supply voltage for the internal voltage multiplier
V_{DD3}	56	-1738.00	1030.00	supply voltage for the internal voltage multiplier
V_{DD3}	57	-1792.00	1030.00	supply voltage for the internal voltage multiplier
V_{DD3}	58	-1846.00	1030.00	supply voltage for the internal voltage multiplier
V_{DD3}	59	-1900.00	1030.00	supply voltage for the internal voltage multiplier
V_{DD3}	60	-1954.00	1030.00	supply voltage for the internal voltage multiplier
V _{SS1}	61	-2062.00	1030.00	ground
V _{SS1}	62	-2116.00	1030.00	ground
V _{SS1}	63	-2170.00	1030.00	ground

80 x 128 pixels matrix LCD driver

Table 5. Bonding pad description ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

Symbol	Pad	Χ (μm)	Υ (μm)	Description
V _{SS1}	64	-2224.00	1030.00	ground
V _{SS1}	65	-2278.00	1030.00	ground
V _{SS1}	66	-2332.00	1030.00	ground
V _{SS1}	67	-2386.00	1030.00	ground
V _{SS1}	68	-2440.00	1030.00	ground
V _{SS1}	69	-2494.00	1030.00	ground
V _{SS1}	70	-2548.00	1030.00	ground
V _{SS2}	71	-2602.00	1030.00	ground for voltage multiplier
V _{SS2}	72	-2656.00	1030.00	ground for voltage multiplier
V _{SS2}	73	-2710.00	1030.00	ground for voltage multiplier
V _{SS2}	74	-2764.00	1030.00	ground for voltage multiplier
V _{SS2}	75	-2818.00	1030.00	ground for voltage multiplier
V _{SS2}	76	-2872.00	1030.00	ground for voltage multiplier
V _{SS2}	77	-2926.00	1030.00	ground for voltage multiplier
V _{SS2}	78	-2980.00	1030.00	ground for voltage multiplier
V _{SS2}	79	-3034.00	1030.00	ground for voltage multiplier
V _{SS2}	80	-3088.00	1030.00	ground for voltage multiplier
T5	81	-3250.00	1030.00	test input 5
T2	82	-3304.00	1030.00	test input 2
T1	83	-3466.00	1030.00	test input 1
T4	84	-3628.00	1030.00	test input 4
T3	85	-3790.00	1030.00	test input 3
V _{OS4}	86	-4060.00	1030.00	V _{LCD} offset input pad 4
V _{OS3}	87	-4222.00	1030.00	V _{LCD} offset input pad 3
V _{OS2}	88	-4384.00	1030.00	V _{LCD} offset input pad 2
V _{OS1}	89	-4654.00	1030.00	V _{LCD} offset input pad 1
V _{OS0}	90	-4816.00	1030.00	V _{LCD} offset input pad 0
V _{LCDOUT}	91	-4924.00	1030.00	voltage multiplier output
V _{LCDOUT}	92	-4978.00	1030.00	voltage multiplier output
V _{LCDOUT}	93	-5032.00	1030.00	voltage multiplier output
V _{LCDOUT}	94	-5086.00	1030.00	voltage multiplier output
V _{LCDOUT}	95	-5140.00	1030.00	voltage multiplier output
V _{LCDOUT}	96	-5194.00	1030.00	voltage multiplier output
V _{LCDOUT}	97	-5248.00	1030.00	voltage multiplier output
V_{LCDOUT}	98	-5302.00	1030.00	voltage multiplier output
V_{LCDOUT}	99	-5356.00	1030.00	voltage multiplier output
V _{LCDSENSE}	100	-5410.00	1030.00	voltage multiplier regulation input
V _{LCDIN}	101	-5464.00	1030.00	LCD supply voltage
V _{LCDIN}	102	-5518.00	1030.00	LCD supply voltage

8 of 88

Table 5. Bonding pad description ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

V _{LCDIN} 103 −5572.00 1030.00 LCD supply voltage V _{LCDIN} 104 −5680.00 1030.00 LCD supply voltage V _{LCDIN} 106 −5734.00 1030.00 LCD supply voltage V _{LCDIN} 107 −5788.00 1030.00 LCD supply voltage - 108 −5904.00 1017.00 alignment mark - 109 −6004.00 1030.00 dummy - 110 −6058.00 1030.00 dummy - 111 −6112.00 1030.00 dummy - 112 −6129.24 −1032.50 dummy - 113 −6077.40 −1032.50 dummy - 114 −6025.56 −1032.50 dummy R79 115 −5973.72 −1032.50 LCD row driver output (R79 is the icon row when the icon row is enabled) R79 116 −5921.88 −1032.50 LCD row driver output (R79 is the icon row when the icon row is enabled) R70 117 −5870.04	Symbol	Pad	Χ (μm)	Υ (μm)	Description
Vicinin 105 −5680.00 1030.00 LCD supply voltage Vicinin 106 −5734.00 1030.00 LCD supply voltage Vicinin 107 −5788.00 1030.00 LCD supply voltage - 108 −5994.00 1030.00 digment mark - 110 −6008.00 1030.00 dummy - 111 −6112.00 1030.00 dummy - 111 −6112.00 1030.00 dummy - 112 −6192.94 −1032.50 dummy - 113 −6077.40 −1032.50 dummy - 114 −6025.56 −1032.50 dummy R79 115 −5973.72 −1032.50 LCD row driver output (R79 is the icon row when the icon row is enabled) R78 116 −5921.88 −1032.50 LCD row driver output (R79 is the icon row when the icon row is enabled) R79 118 −5876.25 −1032.50 LCD row driver output (R79 is the icon row when the icon row is enabled) R79	V_{LCDIN}	103	-5572.00	1030.00	LCD supply voltage
Victorin 106 −5734,00 1030,00 LCD supply voltage Victorin 107 −5788,00 1030,00 LCD supply voltage - 108 −5904,00 1017,00 alignment mark - 109 −6004,00 1030,00 dummy - 111 −6112,00 1030,00 dummy - 112 −6129,24 −1032,50 dummy - 113 −6077,40 −1032,50 dummy - 114 −6025,66 −1032,50 dummy R79 115 −5973,72 −1032,50 LCD row driver output (R79 is the icon row when the icon row is enabled) R78 116 −5921,88 −1032,50 LCD row driver output (R79 is the icon row when the icon row is enabled) R79 115 −5973,72 −1032,50 LCD row driver output R70 118 −5818,20 −1032,50 LCD row driver output R71 117 −5870,04 −1032,50 LCD row driver output R73 121 −5	V _{LCDIN}	104	-5626.00	1030.00	LCD supply voltage
V _{LCDIN} 107 -5788.00 1030.00 LCD supply voltage - 108 -5904.00 1017.00 alignment mark - 109 -6004.00 1030.00 dummy - 111 -6018.00 1030.00 dummy - 111 -6112.00 1030.00 dummy - 113 -6077.40 -1032.50 dummy - 114 -6025.56 -1032.50 dummy R79 115 -5973.72 -1032.50 LCD row driver output (R79 is the icon row when the icon row is enabled) R78 116 -5921.88 -1032.50 LCD row driver output R77 117 -5870.04 -1032.50 LCD row driver output R76 118 -5818.20 -1032.50 LCD row driver output R76 119 -5766.36 -1032.50 LCD row driver output R74 120 -5714.52 -1032.50 LCD row driver output R77 121 -566.36 -1032.50 LCD r	V _{LCDIN}	105	-5680.00	1030.00	LCD supply voltage
. 108	V _{LCDIN}	106	-5734.00	1030.00	LCD supply voltage
- 109	V _{LCDIN}	107	-5788.00	1030.00	LCD supply voltage
- 110 -6058.00 1030.00 dummy - 111 -6112.00 1030.00 dummy - 112 -6129.24 -1032.50 dummy - 113 -6077.40 -1032.50 dummy R7 114 -6025.56 -1032.50 dummy R79 115 -5973.72 -1032.50 LCD row driver output (R79 is the icon row when the icon row is enabled) R78 116 -5921.88 -1032.50 LCD row driver output R77 117 -5870.04 -1032.50 LCD row driver output R76 118 -5818.20 -1032.50 LCD row driver output R75 119 -5766.36 -1032.50 LCD row driver output R74 120 -5714.52 -1032.50 LCD row driver output R73 121 -5662.68 -1032.50 LCD row driver output R71 123 -5590.00 -1032.50 LCD row driver output R69 126 -5455.32 -1032.50	-	108	-5904.00	1017.00	alignment mark
111	-	109	-6004.00	1030.00	dummy
- 112 -6129.24 -1032.50 dummy - 113 -6077.40 -1032.50 dummy - 114 -6025.56 -1032.50 dummy R79 115 -5973.72 -1032.50 LCD row driver output (R79 is the icon row when the icon row is enabled) R78 116 -5921.88 -1032.50 LCD row driver output R77 117 -5870.04 -1032.50 LCD row driver output R76 118 -5818.20 -1032.50 LCD row driver output R75 119 -5766.36 -1032.50 LCD row driver output R74 120 -5714.52 -1032.50 LCD row driver output R74 120 -5714.52 -1032.50 LCD row driver output R73 121 -5662.68 -1032.50 LCD row driver output R71 123 -5559.00 -1032.50 LCD row driver output R71 123 -5559.00 -1032.50 LCD row driver output R66 126 -5403.48	-	110	-6058.00	1030.00	dummy
- 113	-	111	-6112.00	1030.00	dummy
	-	112	-6129.24	-1032.50	dummy
R79 115 -5973.72 -1032.50 LCD row driver output (R79 is the icon row when the icon row is enabled) R78 116 -5921.88 -1032.50 LCD row driver output R77 117 -5870.04 -1032.50 LCD row driver output R76 118 -5818.20 -1032.50 LCD row driver output R75 119 -5766.36 -1032.50 LCD row driver output R74 120 -5714.52 -1032.50 LCD row driver output R73 121 -5662.68 -1032.50 LCD row driver output R71 123 -5559.00 -1032.50 LCD row driver output R70 124 -5507.16 -1032.50 LCD row driver output R69 125 -5455.32 -1032.50 LCD row driver output R66 128 -5293.80 -1032.50 LCD row driver output R66 128 -5299.80 -1032.50 LCD row driver output R63 131 -5144.28 -1032.50 LCD row driver output	-	113	-6077.40	-1032.50	dummy
R78	-	114	-6025.56	-1032.50	dummy
R77 117 -5870.04 -1032.50 LCD row driver output R76 118 -5818.20 -1032.50 LCD row driver output R75 119 -5766.36 -1032.50 LCD row driver output R74 120 -5714.52 -1032.50 LCD row driver output R73 121 -5662.68 -1032.50 LCD row driver output R72 122 -5610.84 -1032.50 LCD row driver output R71 123 -5559.00 -1032.50 LCD row driver output R70 124 -5507.16 -1032.50 LCD row driver output R69 125 -5455.32 -1032.50 LCD row driver output R68 126 -5403.48 -1032.50 LCD row driver output R66 128 -5299.80 -1032.50 LCD row driver output R66 128 -5299.80 -1032.50 LCD row driver output R64 130 -5196.12 -1032.50 LCD row driver output R63 131 -5144	R79	115	-5973.72	-1032.50	. `
R76 118 -5818.20 -1032.50 LCD row driver output R75 119 -5766.36 -1032.50 LCD row driver output R74 120 -5714.52 -1032.50 LCD row driver output R73 121 -5662.68 -1032.50 LCD row driver output R72 122 -5610.84 -1032.50 LCD row driver output R71 123 -5559.00 -1032.50 LCD row driver output R70 124 -5507.16 -1032.50 LCD row driver output R69 125 -5455.32 -1032.50 LCD row driver output R68 126 -5403.48 -1032.50 LCD row driver output R67 127 -5351.64 -1032.50 LCD row driver output R66 128 -5299.80 -1032.50 LCD row driver output R65 129 -5247.96 -1032.50 LCD row driver output R63 131 -5144.28 -1032.50 LCD row driver output R62 132 -5092	R78	116	-5921.88	-1032.50	LCD row driver output
R75 119 -5766.36 -1032.50 LCD row driver output R74 120 -5714.52 -1032.50 LCD row driver output R73 121 -5662.68 -1032.50 LCD row driver output R72 122 -5610.84 -1032.50 LCD row driver output R71 123 -5559.00 -1032.50 LCD row driver output R70 124 -5507.16 -1032.50 LCD row driver output R69 125 -5455.32 -1032.50 LCD row driver output R68 126 -5493.48 -1032.50 LCD row driver output R67 127 -5351.64 -1032.50 LCD row driver output R66 128 -5299.80 -1032.50 LCD row driver output R65 129 -5247.96 -1032.50 LCD row driver output R64 130 -5196.12 -1032.50 LCD row driver output R62 132 -5092.44 -1032.50 LCD row driver output R61 133 -5040.60 -1032.50 LCD row driver output R59 135	R77	117	-5870.04	-1032.50	LCD row driver output
R74 120 -5714.52 -1032.50 LCD row driver output R73 121 -5662.68 -1032.50 LCD row driver output R72 122 -5610.84 -1032.50 LCD row driver output R71 123 -5559.00 -1032.50 LCD row driver output R70 124 -5507.16 -1032.50 LCD row driver output R69 125 -5455.32 -1032.50 LCD row driver output R68 126 -5493.48 -1032.50 LCD row driver output R67 127 -5351.64 -1032.50 LCD row driver output R66 128 -5299.80 -1032.50 LCD row driver output R65 129 -5247.96 -1032.50 LCD row driver output R64 130 -5196.12 -1032.50 LCD row driver output R63 131 -5144.28 -1032.50 LCD row driver output R61 133 -5040.60 -1032.50 LCD row driver output R60 134 -4988	R76	118	-5818.20	-1032.50	LCD row driver output
R73 121 -5662.68 -1032.50 LCD row driver output R72 122 -5610.84 -1032.50 LCD row driver output R71 123 -5559.00 -1032.50 LCD row driver output R70 124 -5507.16 -1032.50 LCD row driver output R69 125 -5455.32 -1032.50 LCD row driver output R68 126 -5455.32 -1032.50 LCD row driver output R68 126 -5455.32 -1032.50 LCD row driver output R67 127 -5351.64 -1032.50 LCD row driver output R66 128 -5299.80 -1032.50 LCD row driver output R65 129 -5247.96 -1032.50 LCD row driver output R64 130 -5196.12 -1032.50 LCD row driver output R62 132 -5092.44 -1032.50 LCD row driver output R61 133 -5040.60 -1032.50 LCD row driver output R59 135 -4936.92 -1032.50 LCD row driver output R58 136	R75	119	-5766.36	-1032.50	LCD row driver output
R72 122 -5610.84 -1032.50 LCD row driver output R71 123 -5559.00 -1032.50 LCD row driver output R70 124 -5507.16 -1032.50 LCD row driver output R69 125 -5455.32 -1032.50 LCD row driver output R68 126 -5403.48 -1032.50 LCD row driver output R67 127 -5351.64 -1032.50 LCD row driver output R66 128 -5299.80 -1032.50 LCD row driver output R65 129 -5247.96 -1032.50 LCD row driver output R64 130 -5196.12 -1032.50 LCD row driver output R63 131 -5144.28 -1032.50 LCD row driver output R62 132 -5092.44 -1032.50 LCD row driver output R61 133 -5040.60 -1032.50 LCD row driver output R59 135 -4936.92 -1032.50 LCD row driver output R58 136 -4885	R74	120	-5714.52	-1032.50	LCD row driver output
R71 123 -5559.00 -1032.50 LCD row driver output R70 124 -5507.16 -1032.50 LCD row driver output R69 125 -5455.32 -1032.50 LCD row driver output R68 126 -5403.48 -1032.50 LCD row driver output R67 127 -5351.64 -1032.50 LCD row driver output R66 128 -5299.80 -1032.50 LCD row driver output R65 129 -5247.96 -1032.50 LCD row driver output R64 130 -5196.12 -1032.50 LCD row driver output R63 131 -5144.28 -1032.50 LCD row driver output R62 132 -5092.44 -1032.50 LCD row driver output R61 133 -5040.60 -1032.50 LCD row driver output R59 134 -4988.76 -1032.50 LCD row driver output R59 135 -4936.92 -1032.50 LCD row driver output R57 137 -4833.24 -1032.50 LCD row driver output R56 138	R73	121	-5662.68	-1032.50	LCD row driver output
R70 124 -5507.16 -1032.50 LCD row driver output R69 125 -5455.32 -1032.50 LCD row driver output R68 126 -5403.48 -1032.50 LCD row driver output R67 127 -5351.64 -1032.50 LCD row driver output R66 128 -5299.80 -1032.50 LCD row driver output R65 129 -5247.96 -1032.50 LCD row driver output R64 130 -5196.12 -1032.50 LCD row driver output R63 131 -5144.28 -1032.50 LCD row driver output R62 132 -5092.44 -1032.50 LCD row driver output R61 133 -5040.60 -1032.50 LCD row driver output R60 134 -4988.76 -1032.50 LCD row driver output R59 135 -4936.92 -1032.50 LCD row driver output R57 137 -4833.24 -1032.50 LCD row driver output R56 138 -4781	R72	122	-5610.84	-1032.50	LCD row driver output
R69 125 -5455.32 -1032.50 LCD row driver output R68 126 -5403.48 -1032.50 LCD row driver output R67 127 -5351.64 -1032.50 LCD row driver output R66 128 -5299.80 -1032.50 LCD row driver output R65 129 -5247.96 -1032.50 LCD row driver output R64 130 -5196.12 -1032.50 LCD row driver output R63 131 -5144.28 -1032.50 LCD row driver output R62 132 -5092.44 -1032.50 LCD row driver output R61 133 -5040.60 -1032.50 LCD row driver output R60 134 -4988.76 -1032.50 LCD row driver output R59 135 -4936.92 -1032.50 LCD row driver output R58 136 -4885.08 -1032.50 LCD row driver output R56 138 -4781.40 -1032.50 LCD row driver output R56 139 -4729.56 -1032.50 LCD row driver output R54 140	R71	123	-5559.00	-1032.50	LCD row driver output
R68 126 -5403.48 -1032.50 LCD row driver output R67 127 -5351.64 -1032.50 LCD row driver output R66 128 -5299.80 -1032.50 LCD row driver output R65 129 -5247.96 -1032.50 LCD row driver output R64 130 -5196.12 -1032.50 LCD row driver output R63 131 -5144.28 -1032.50 LCD row driver output R62 132 -5092.44 -1032.50 LCD row driver output R61 133 -5040.60 -1032.50 LCD row driver output R60 134 -4988.76 -1032.50 LCD row driver output R59 135 -4936.92 -1032.50 LCD row driver output R58 136 -4885.08 -1032.50 LCD row driver output R57 137 -4833.24 -1032.50 LCD row driver output R56 138 -4781.40 -1032.50 LCD row driver output R55 139 -4729.56 -1032.50 LCD row driver output R54 140	R70	124	-5507.16	-1032.50	LCD row driver output
R67 127 -5351.64 -1032.50 LCD row driver output R66 128 -5299.80 -1032.50 LCD row driver output R65 129 -5247.96 -1032.50 LCD row driver output R64 130 -5196.12 -1032.50 LCD row driver output R63 131 -5144.28 -1032.50 LCD row driver output R62 132 -5092.44 -1032.50 LCD row driver output R61 133 -5040.60 -1032.50 LCD row driver output R60 134 -4988.76 -1032.50 LCD row driver output R59 135 -4936.92 -1032.50 LCD row driver output R58 136 -4885.08 -1032.50 LCD row driver output R57 137 -4833.24 -1032.50 LCD row driver output R56 138 -4781.40 -1032.50 LCD row driver output R55 139 -4729.56 -1032.50 LCD row driver output R54 140 -4677.72 -1032.50 LCD row driver output	R69	125	-5455.32	-1032.50	LCD row driver output
R66 128 -5299.80 -1032.50 LCD row driver output R65 129 -5247.96 -1032.50 LCD row driver output R64 130 -5196.12 -1032.50 LCD row driver output R63 131 -5144.28 -1032.50 LCD row driver output R62 132 -5092.44 -1032.50 LCD row driver output R61 133 -5040.60 -1032.50 LCD row driver output R60 134 -4988.76 -1032.50 LCD row driver output R59 135 -4936.92 -1032.50 LCD row driver output R58 136 -4885.08 -1032.50 LCD row driver output R57 137 -4833.24 -1032.50 LCD row driver output R56 138 -4781.40 -1032.50 LCD row driver output R55 139 -4729.56 -1032.50 LCD row driver output R54 140 -4677.72 -1032.50 LCD row driver output	R68	126	-5403.48	-1032.50	LCD row driver output
R65 129 -5247.96 -1032.50 LCD row driver output R64 130 -5196.12 -1032.50 LCD row driver output R63 131 -5144.28 -1032.50 LCD row driver output R62 132 -5092.44 -1032.50 LCD row driver output R61 133 -5040.60 -1032.50 LCD row driver output R60 134 -4988.76 -1032.50 LCD row driver output R59 135 -4936.92 -1032.50 LCD row driver output R58 136 -4885.08 -1032.50 LCD row driver output R57 137 -4833.24 -1032.50 LCD row driver output R56 138 -4781.40 -1032.50 LCD row driver output R55 139 -4729.56 -1032.50 LCD row driver output R54 140 -4677.72 -1032.50 LCD row driver output	R67	127	-5351.64	-1032.50	LCD row driver output
R64 130 -5196.12 -1032.50 LCD row driver output R63 131 -5144.28 -1032.50 LCD row driver output R62 132 -5092.44 -1032.50 LCD row driver output R61 133 -5040.60 -1032.50 LCD row driver output R60 134 -4988.76 -1032.50 LCD row driver output R59 135 -4936.92 -1032.50 LCD row driver output R58 136 -4885.08 -1032.50 LCD row driver output R57 137 -4833.24 -1032.50 LCD row driver output R56 138 -4781.40 -1032.50 LCD row driver output R55 139 -4729.56 -1032.50 LCD row driver output R54 140 -4677.72 -1032.50 LCD row driver output	R66	128	-5299.80	-1032.50	LCD row driver output
R63 131 -5144.28 -1032.50 LCD row driver output R62 132 -5092.44 -1032.50 LCD row driver output R61 133 -5040.60 -1032.50 LCD row driver output R60 134 -4988.76 -1032.50 LCD row driver output R59 135 -4936.92 -1032.50 LCD row driver output R58 136 -4885.08 -1032.50 LCD row driver output R57 137 -4833.24 -1032.50 LCD row driver output R56 138 -4781.40 -1032.50 LCD row driver output R55 139 -4729.56 -1032.50 LCD row driver output R54 140 -4677.72 -1032.50 LCD row driver output	R65	129	-5247.96	-1032.50	LCD row driver output
R62 132 -5092.44 -1032.50 LCD row driver output R61 133 -5040.60 -1032.50 LCD row driver output R60 134 -4988.76 -1032.50 LCD row driver output R59 135 -4936.92 -1032.50 LCD row driver output R58 136 -4885.08 -1032.50 LCD row driver output R57 137 -4833.24 -1032.50 LCD row driver output R56 138 -4781.40 -1032.50 LCD row driver output R55 139 -4729.56 -1032.50 LCD row driver output R54 140 -4677.72 -1032.50 LCD row driver output	R64	130	-5196.12	-1032.50	LCD row driver output
R61 133 -5040.60 -1032.50 LCD row driver output R60 134 -4988.76 -1032.50 LCD row driver output R59 135 -4936.92 -1032.50 LCD row driver output R58 136 -4885.08 -1032.50 LCD row driver output R57 137 -4833.24 -1032.50 LCD row driver output R56 138 -4781.40 -1032.50 LCD row driver output R55 139 -4729.56 -1032.50 LCD row driver output R54 140 -4677.72 -1032.50 LCD row driver output	R63	131	-5144.28	-1032.50	LCD row driver output
R60 134 -4988.76 -1032.50 LCD row driver output R59 135 -4936.92 -1032.50 LCD row driver output R58 136 -4885.08 -1032.50 LCD row driver output R57 137 -4833.24 -1032.50 LCD row driver output R56 138 -4781.40 -1032.50 LCD row driver output R55 139 -4729.56 -1032.50 LCD row driver output R54 140 -4677.72 -1032.50 LCD row driver output	R62	132	-5092.44	-1032.50	LCD row driver output
R59 135 -4936.92 -1032.50 LCD row driver output R58 136 -4885.08 -1032.50 LCD row driver output R57 137 -4833.24 -1032.50 LCD row driver output R56 138 -4781.40 -1032.50 LCD row driver output R55 139 -4729.56 -1032.50 LCD row driver output R54 140 -4677.72 -1032.50 LCD row driver output	R61	133	-5040.60	-1032.50	LCD row driver output
R58 136 -4885.08 -1032.50 LCD row driver output R57 137 -4833.24 -1032.50 LCD row driver output R56 138 -4781.40 -1032.50 LCD row driver output R55 139 -4729.56 -1032.50 LCD row driver output R54 140 -4677.72 -1032.50 LCD row driver output	R60	134	-4988.76	-1032.50	LCD row driver output
R57 137 -4833.24 -1032.50 LCD row driver output R56 138 -4781.40 -1032.50 LCD row driver output R55 139 -4729.56 -1032.50 LCD row driver output R54 140 -4677.72 -1032.50 LCD row driver output	R59	135	-4936.92	-1032.50	LCD row driver output
R56 138 -4781.40 -1032.50 LCD row driver output R55 139 -4729.56 -1032.50 LCD row driver output R54 140 -4677.72 -1032.50 LCD row driver output	R58	136	-4885.08	-1032.50	LCD row driver output
R55 139 -4729.56 -1032.50 LCD row driver output R54 140 -4677.72 -1032.50 LCD row driver output	R57	137	-4833.24	-1032.50	LCD row driver output
R54 140 -4677.72 -1032.50 LCD row driver output	R56	138	-4781.40	-1032.50	LCD row driver output
·	R55	139	-4729.56	-1032.50	LCD row driver output
R53 141 –4625.88 –1032.50 LCD row driver output	R54	140	-4677.72	-1032.50	LCD row driver output
	R53	141	-4625.88	-1032.50	LCD row driver output

Table 5. Bonding pad description ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

rigare z.				
Symbol	Pad	Χ (μm)	Υ (μm)	Description
R52	142	-4574.04	-1032.50	LCD row driver output
R51	143	-4522.20	-1032.50	LCD row driver output
R50	144	-4470.36	-1032.50	LCD row driver output
R49	145	-4418.52	-1032.50	LCD row driver output
R48	146	-4366.68	-1032.50	LCD row driver output
R47	147	-4314.84	-1032.50	LCD row driver output
R46	148	-4263.00	-1032.50	LCD row driver output
R45	149	-4211.16	-1032.50	LCD row driver output
R44	150	-4159.32	-1032.50	LCD row driver output
R43	151	-4107.48	-1032.50	LCD row driver output
R42	152	-4055.64	-1032.50	LCD row driver output
R41	153	-4003.80	-1032.50	LCD row driver output
R40	154	-3951.96	-1032.50	LCD row driver output
R80	155	-3900.12	-1032.50	duplicate of R79
C0	156	-3640.92	-1032.50	LCD column driver output
C1	157	-3589.08	-1032.50	LCD column driver output
C2	158	-3537.24	-1032.50	LCD column driver output
C3	159	-3485.40	-1032.50	LCD column driver output
C4	160	-3433.56	-1032.50	LCD column driver output
C5	161	-3381.72	-1032.50	LCD column driver output
C6	162	-3329.88	-1032.50	LCD column driver output
C7	163	-3278.04	-1032.50	LCD column driver output
C8	164	-3226.20	-1032.50	LCD column driver output
C9	165	-3174.36	-1032.50	LCD column driver output
C10	166	-3122.52	-1032.50	LCD column driver output
C11	167	-3070.68	-1032.50	LCD column driver output
C12	168	-3018.84	-1032.50	LCD column driver output
C13	169	-2967.00	-1032.50	LCD column driver output
C14	170	-2915.16	-1032.50	LCD column driver output
C15	171	-2863.32	-1032.50	LCD column driver output
C16	172	-2811.48	-1032.50	LCD column driver output
C17	173	-2759.64	-1032.50	LCD column driver output
C18	174	-2707.80	-1032.50	LCD column driver output
C19	175	-2655.96	-1032.50	LCD column driver output
C20	176	-2604.12	-1032.50	LCD column driver output
C21	177	-2552.28	-1032.50	LCD column driver output
C22	178	-2500.44	-1032.50	LCD column driver output
C23	179	-2448.60	-1032.50	LCD column driver output
C24	180	-2396.76	-1032.50	LCD column driver output

Table 5. Bonding pad description ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

rigaro z.				
Symbol	Pad	Χ (μm)	Υ (μm)	Description
C25	181	-2344.92	-1032.50	LCD column driver output
C26	182	-2293.08	-1032.50	LCD column driver output
C27	183	-2241.24	-1032.50	LCD column driver output
C28	184	-2189.40	-1032.50	LCD column driver output
C29	185	-2137.56	-1032.50	LCD column driver output
C30	186	-2085.72	-1032.50	LCD column driver output
C31	187	-2033.88	-1032.50	LCD column driver output
C32	188	-1878.36	-1032.50	LCD column driver output
C33	189	-1826.52	-1032.50	LCD column driver output
C34	190	-1774.68	-1032.50	LCD column driver output
C35	191	-1722.84	-1032.50	LCD column driver output
C36	192	-1671.00	-1032.50	LCD column driver output
C37	193	-1619.16	-1032.50	LCD column driver output
C38	194	-1567.32	-1032.50	LCD column driver output
C39	195	-1515.48	-1032.50	LCD column driver output
C40	196	-1463.64	-1032.50	LCD column driver output
C41	197	-1411.80	-1032.50	LCD column driver output
C42	198	-1359.16	-1032.50	LCD column driver output
C43	199	-1308.12	-1032.50	LCD column driver output
C44	200	-1256.28	-1032.50	LCD column driver output
C45	201	-1204.44	-1032.50	LCD column driver output
C46	202	-1152.60	-1032.50	LCD column driver output
C47	203	-1100.76	-1032.50	LCD column driver output
C48	204	-1048.92	-1032.50	LCD column driver output
C49	205	-997.08	-1032.50	LCD column driver output
C50	206	-945.24	-1032.50	LCD column driver output
C51	207	-893.40	-1032.50	LCD column driver output
C52	208	-841.56	-1032.50	LCD column driver output
C53	209	-789.72	-1032.50	LCD column driver output
C54	210	-737.88	-1032.50	LCD column driver output
C55	211	-686.04	-1032.50	LCD column driver output
C56	212	-634.20	-1032.50	LCD column driver output
C57	213	-582.36	-1032.50	LCD column driver output
C58	214	-530.52	-1032.50	LCD column driver output
C59	215	-478.68	-1032.50	LCD column driver output
C60	216	-426.84	-1032.50	LCD column driver output
C61	217	-375.00	-1032.50	LCD column driver output
C62	218	-323.16	-1032.50	LCD column driver output
C63	219	-271.32	-1032.50	LCD column driver output

PCF8811 NXP Semiconductors

Bonding pad description ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2

Symbol	Pad	Χ (μm)	Υ (μm)	Description
C64	220	-115.80	-1032.50	LCD column driver output
C65	221	-63.96	-1032.50	LCD column driver output
C66	222	-12.12	-1032.50	LCD column driver output
C67	223	39.72	-1032.50	LCD column driver output
C68	224	91.56	-1032.50	LCD column driver output
C69	225	143.40	-1032.50	LCD column driver output
C70	226	195.24	-1032.50	LCD column driver output
C71	227	247.08	-1032.50	LCD column driver output
C72	228	298.92	-1032.50	LCD column driver output
C73	229	350.76	-1032.50	LCD column driver output
C74	230	402.60	-1032.50	LCD column driver output
C75	231	454.44	-1032.50	LCD column driver output
C76	232	506.28	-1032.50	LCD column driver output
C77	233	558.12	-1032.50	LCD column driver output
C78	234	609.96	-1032.50	LCD column driver output
C79	235	661.80	-1032.50	LCD column driver output
C80	236	713.64	-1032.50	LCD column driver output
C81	237	765.48	-1032.50	LCD column driver output
C82	238	817.32	-1032.50	LCD column driver output
C83	239	869.16	-1032.50	LCD column driver output
C84	240	921.00	-1032.50	LCD column driver output
C85	241	972.84	-1032.50	LCD column driver output
C86	242	1024.68	-1032.50	LCD column driver output
C87	243	1076.52	-1032.50	LCD column driver output
C88	244	1128.36	-1032.50	LCD column driver output
C89	245	1180.20	-1032.50	LCD column driver output
C90	246	1232.04	-1032.50	LCD column driver output
C91	247	1283.88	-1032.50	LCD column driver output
C92	248	1335.72	-1032.50	LCD column driver output
C93	249	1387.56	-1032.50	LCD column driver output
C94	250	1439.40	-1032.50	LCD column driver output
C95	251	1491.24	-1032.50	LCD column driver output
C96	252	1646.76	-1032.50	LCD column driver output
C97	253	1698.60	-1032.50	LCD column driver output
C98	254	1750.44	-1032.50	LCD column driver output
C99	255	1802.28	-1032.50	LCD column driver output
C100	256	1854.12	-1032.50	LCD column driver output
C101	257	1905.96	-1032.50	LCD column driver output
C102	258	1957.80	-1032.50	LCD column driver output

Table 5. Bonding pad description ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

riguro z.				
Symbol	Pad	Χ (μm)	Υ (μm)	Description
C103	259	2009.64	-1032.50	LCD column driver output
C104	260	2061.48	-1032.50	LCD column driver output
C105	261	2113.32	-1032.50	LCD column driver output
C106	262	2165.16	-1032.50	LCD column driver output
C107	263	2217.00	-1032.50	LCD column driver output
C108	264	2268.84	-1032.50	LCD column driver output
C109	265	2320.68	-1032.50	LCD column driver output
C110	266	2372.52	-1032.50	LCD column driver output
C111	267	2424.36	-1032.50	LCD column driver output
C112	268	2476.20	-1032.50	LCD column driver output
C113	269	2528.04	-1032.50	LCD column driver output
C114	270	2579.88	-1032.50	LCD column driver output
C115	271	2631.72	-1032.50	LCD column driver output
C116	272	2683.56	-1032.50	LCD column driver output
C117	273	2735.40	-1032.50	LCD column driver output
C118	274	2787.24	-1032.50	LCD column driver output
C119	275	2839.08	-1032.50	LCD column driver output
C120	276	2890.92	-1032.50	LCD column driver output
C121	277	2942.76	-1032.50	LCD column driver output
C122	278	2994.60	-1032.50	LCD column driver output
C123	279	3046.44	-1032.50	LCD column driver output
C124	280	3098.28	-1032.50	LCD column driver output
C125	281	3150.12	-1032.50	LCD column driver output
C126	282	3201.96	-1032.50	LCD column driver output
C127	283	3253.80	-1032.50	LCD column driver output
R0	284	3461.16	-1032.50	LCD row driver output
R1	285	3513.00	-1032.50	LCD row driver output
R2	286	3564.84	-1032.50	LCD row driver output
R3	287	3616.68	-1032.50	LCD row driver output
R4	288	3668.52	-1032.50	LCD row driver output
R5	289	3720.36	-1032.50	LCD row driver output
R6	290	3772.20	-1032.50	LCD row driver output
R7	291	3824.04	-1032.50	LCD row driver output
R8	292	3875.88	-1032.50	LCD row driver output
R9	293	3927.72	-1032.50	LCD row driver output
R10	294	3979.56	-1032.50	LCD row driver output
R11	295	4031.40	-1032.50	LCD row driver output
R12	296	4083.24	-1032.50	LCD row driver output
R13	297	4135.08	-1032.50	LCD row driver output

80 x 128 pixels matrix LCD driver

Table 5. Bonding pad description ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see

Figure 2. **Pad Χ (μm) Y (μm)** Description **Symbol** R14 298 4186.92 -1032.50LCD row driver output 299 4238.76 -1032.50R15 LCD row driver output R16 300 4290.60 -1032.50LCD row driver output R17 301 4342.44 -1032.50LCD row driver output R18 302 4394.28 -1032.50LCD row driver output R19 303 -1032.50LCD row driver output 4446.12 304 4497.96 -1032.50LCD row driver output R20 R21 305 4549.80 -1032.50LCD row driver output R22 LCD row driver output 306 4601.64 -1032.50R23 307 4653.48 -1032.50LCD row driver output R24 308 4705.32 -1032.50LCD row driver output R25 309 4757.16 -1032.50LCD row driver output R26 310 4809.00 -1032.50LCD row driver output R27 311 -1032.50LCD row driver output 4860.84 R28 312 4912.68 -1032.50LCD row driver output R29 313 4964.52 -1032.50LCD row driver output 314 -1032.50LCD row driver output R30 5016.36 R31 315 5068.20 -1032.50LCD row driver output R32 316 5120.04 -1032.50LCD row driver output R33 317 5171.88 -1032.50LCD row driver output R34 318 5223.72 -1032.50LCD row driver output R35 319 5275.56 -1032.50LCD row driver output R36 320 5327.40 -1032.50LCD row driver output R37 321 5379.24 -1032.50LCD row driver output R38 322 5431.08 -1032.50LCD row driver output R39 323 5482.92 -1032.50LCD row driver output 324 5638.44 -1032.50dummy 325 5690.28 -1032.50dummy 326 5742.12 -1032.50dummy 327 5793.96 -1032.50dummy 328 5845.80 -1032.50dummy 329 -1032.505897.64 dummy 330 5949.48 -1032.50dummy 331 -1032.506001.32 dummy 332 -1032.506053.16 dummy 333 -1032.506105.00 dummy

80 x 128 pixels matrix LCD driver

7. Functional description

7.1 Pad functions

7.1.1 R0 to R79: row driver outputs

These pads output the display row signals.

7.1.2 C0 to C127: column driver signals

These pads output the display column signals.

7.1.3 V_{SS1} and V_{SS2} : negative power supply rails

V_{SS2} is for the voltage multiplier. These 2 supply rails must be connected together.

7.1.4 V_{DD1} to V_{DD3} : positive power supply rails

- $\bullet~$ V_{DD2} and V_{DD3} are the supply voltages for the internal voltage multiplier
- V_{DD2} and V_{DD3} have the same voltage and may be connected together outside of the chip; see Section 17
- V_{DD1} is used as supply for the rest of the chip
- V_{DD1} can be connected together with V_{DD2} and V_{DD3}
- If the internal voltage multiplier is not used then pads V_{DD2} and V_{DD3} must be connected to V_{DD1}; see <u>Section 17</u>
- In the case that V_{DD1}, V_{DD2} and V_{DD3} are connected together, care must be taken with respect to the supply voltage range; see Section 14

7.1.5 V_{OTPPROG}: OTP power supply

Supply voltage for the OTP programming; see <u>Section 18</u>. V_{OTPPROG} can be combined with the SCLH/SCE pad in order to reduce the external connections.

7.1.6 V_{LCDOUT}, V_{LCDIN}, and V_{LCDSENSE}: LCD power supply

Positive power supply for the liquid crystal display.

- If the internal V_{I CD} multiplier is used, then all three inputs must be connected together
- If V_{LCD} multiplier is disabled and an external voltage is supplied to V_{LCDIN}, then V_{LCDOUT} must be left open-circuit and V_{LCDSENSE} must be connected to V_{LCDIN}
- V_{DD2} and V_{DD3} should be applied according to the specified voltage range
- If the PCF8811 is in power-save mode, the external LCD supply voltage can be switched off

7.1.7 T1 to T5: test pads

T1, T2 and T5 must be connected to V_{SS} . T3 and T4 must be left open-circuit. These test pads are not accessible to the user.

80 x 128 pixels matrix LCD driver

7.1.8 MF2 to MF0

MF2 to MF0 are device manufacturer ID pads. These are meant to encode an IC supplier or a module maker. A module maker may want to be able to read which IC-supplier is on a module. Similarly they can be used if various suppliers for identical modules are used in order to identify the module supplier. By reading the values for MF2 to MF0 the manufacturer ID can be detected. Any possible combination can be used.

7.1.9 DS0

Device recognition pad; see Table 16.

7.1.10 V_{OS4} to V_{OS0}

These 5 input pads enable the calibration of the offset of the programmed V_{LCD} ; see Equation 4 and Equation 5. V_{OS4} to V_{OS0} must be connected to V_{DD1} or V_{SS1} .

7.1.11 EXT: extended command set

Input to select the basic command set or the extended command set. Must be connected on the module to have only one command set enabled; see <u>Table 6</u>.

Table 6. Command set selection

Pad	Level	Description
EXT	LOW (V _{SS1})	basic command set
	HIGH (V _{DD1})	extended command set

Remark: NXP Semiconductors recommends that the extended command set is used.

7.1.12 PS0, PS1 and PS2

Parallel, serial or I²C-bus interface selection; see Table 7.

Table 7. Interface selection

PS[2:0]	Interface
000	3-line SPI
001	4-line SPI
010	no operation
011	6800 parallel interface
100 or 110	I ² C-bus interface
101 or 111	3-line serial interface

7.1.13 D/C

Input to select either data or command input. Not used in the 3-line serial interface, 3-line SPI and I^2C -bus interface and must be connected to V_{DD1} or V_{SS1} .

7.1.14 R/W/WR

Input to select read or write mode when the 6800 parallel interface is selected. Not used in the serial and I^2C -bus mode and must be connected to V_{DD1} or V_{SS1} .

7.1.15 E/RD

E is the clock enable input for the 6800 parallel bus. Not used in the serial or I^2C -bus interface and must be connected to V_{DD1} or V_{SS1} .

80 x 128 pixels matrix LCD driver

7.1.16 SCLH/SCE

Input to select the chip and so allowing data or commands to be clocked in; or input for the serial clock line when the I²C-bus interface is selected.

7.1.17 SDAH

I²C-bus serial data input. When not used, it must be connected to V_{DD1} or V_{SS1}.

7.1.18 SDAHOUT

SDAHOUT is the serial data acknowledge output for the I²C-bus interface.

- By connecting SDAHOUT to SDAH externally, the SDAH line becomes fully I²C-bus compatible
- The acknowledge output is separated from the serial data line due to the following reasons:
 - In COG applications, where the track resistance from the SDAHOUT pad to the system SDAH line can be significant, a potential divider is generated by the bus pull-up resistor and the ITO track resistance
 - It is possible that during the acknowledge cycle, the PCF8811 will not be able to create a valid LOW level
 - By splitting the SDAH input from the SDAHOUT output, the device could be used in a mode that ignores the acknowledge bit
 - In COG applications, where the acknowledge cycle is required, it is necessary to minimize the track resistance from the SDAHOUT pad to the system SDAH line to guarantee a valid LOW level
- When not used, it must be connected to V_{DD1} or V_{SS1}

7.1.19 DB7 to DB0

These input/output lines are used by several interfaces as described below. When not used in the serial interface or the I^2C -bus they must be connected to V_{DD1} or V_{SS1} .

7.1.19.1 DB7 to DB0 (parallel interface)

8-bit bidirectional bus. DB7 is the MSB.

7.1.19.2 DB7, DB6 and DB5 (serial interface)

- DB7 is used for serial input data (SDATA) when the serial interface is selected
- DB6 (SCLK) is used for the serial input clock when the serial interface is selected
- DB5 is used as the serial output of the serial interface (SDO)

7.1.19.3 DB3 and DB2 (I²C-bus interface)

DB3 and DB2 are respectively the SA1 and SA0 inputs when the I^2C -bus is selected and can be used so that up to four PCF8811s can be distinguished on one I^2C -bus.

7.1.20 OSC: oscillator

- When the on-chip oscillator is used, this input must be connected to V_{DD1}
- If an external clock signal is used, it is connected to this input

PCF8811_5

80 x 128 pixels matrix LCD driver

 If the oscillator and an external clock are both inhibited by connecting the OSC pad to V_{SS1}, the display is not clocked and may be left in a Direct Current (DC) state. To avoid a DC on display, the chip should always be put into power-down mode before stopping the clock

7.1.21 **RES**: reset

This signal will reset the device and must be applied to properly initialize the chip. The signal is active LOW.

7.2 Block diagram functions

See Figure 1 for the block diagram layout.

7.2.1 Address counter

The address counter assigns addresses to the display data RAM for writing. The X address X[6:0] and the Y address Y[3:0] are set separately.

7.2.2 Display data RAM

The PCF8811 contains an 80 × 128 bit static RAM which stores the display data.

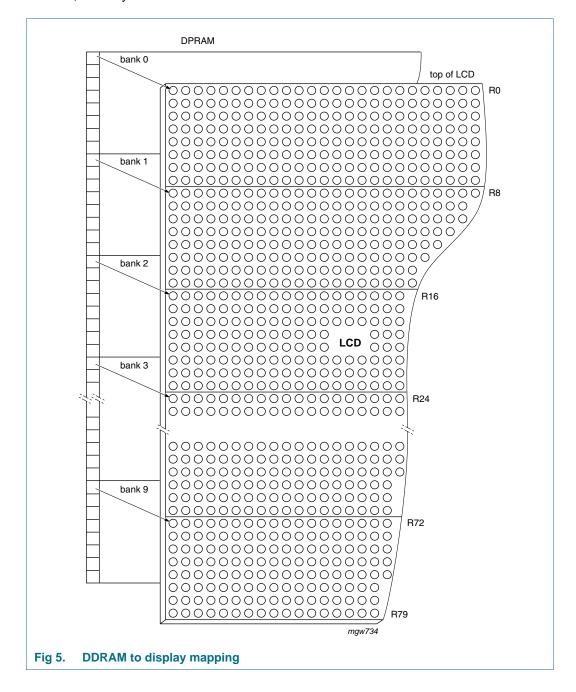
- The RAM is divided into 10 banks of 128 bytes (10 × 8 × 128 bit)
- The icon row (when enabled) is always row 79 and located in bank 9
- During RAM access, data is transferred to the RAM via the parallel interface, serial interface or I²C-bus interface
- There is a direct correspondence between the X address and the column output number

7.2.3 Timing generator

The timing generator produces the various signals required to drive the internal circuitry. Internal chip operation is not affected by operations on the data bus.

7.2.4 Display address counter

The display is generated by reading out the RAM content for 2, 4 or 8 rows simultaneously, depending on the current selected display size. This content is processed with the corresponding set of 2, 4 or 8 orthogonal functions and so generates the signals for switching the pixels in the display on or off according to the RAM content. The value p defines the number of rows which are simultaneously selected. It is possible to set the p value for the display sizes 64 and 80 manually to p = 4; see Table 11. The display status (display on/off, normal display/all dots on and normal/inverse video) is set by the bits DON, DAL and E in the command display control; see Table 12.


7.2.5 LCD row and column drivers

The PCF8811 contains 80 row and 128 column drivers, which connect the appropriate LCD bias voltages in sequence to the display in accordance with the data to be displayed.

80 x 128 pixels matrix LCD driver

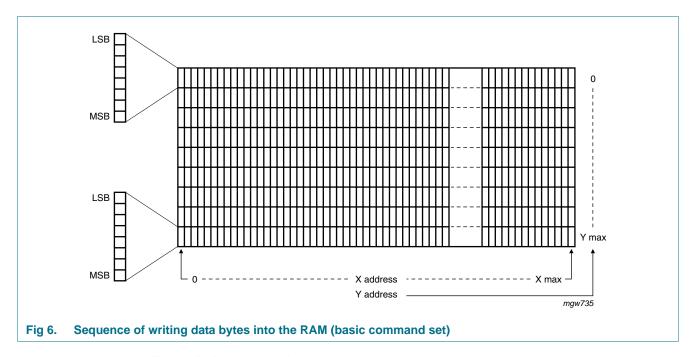
8. Addressing

Data is written in bytes to the RAM matrix of the PCF8811 as shown in <u>Figure 5</u>. The display RAM has a matrix of 80×128 bits. The columns are addressed by the address pointer. The address ranges are: X = 0 to 127 (111 1111), Y = 0 to 9 (1001). The Y address represents the bank number. The effective X and Y addresses are programmed in such an order to use the PCF8811 with different display sizes, without additional loading of the microprocessor. Addresses outside these ranges are not allowed. The icon row, when enabled, is always row 79 and therefore located in bank 9.

80 x 128 pixels matrix LCD driver

8.1 Display data RAM structure

The mode for storing data into the data RAM depends on the selected command set.


8.1.1 Basic command set

After a write operation the column address counter (X address) auto-increments by one, and wraps to zero after the last column is written. The number of columns (X address) after which the wrap around must occur can be programmed.

The Y address counter does not auto-increment in the basic command set. The counter stops when a complete bank has been written to. In this case the Y address counter must be set; for Y address, see Table 11. To write the next bank, see Figure 6.

When only a part of the RAM is used, both $X(X_{max})$ and $Y(Y_{max})$ addresses can be set.

The data order in the basic command set is as defined in Figure 6.

8.1.2 Extended command set

8.1.2.1 Horizontal/vertical addressing

Two different address modes are possible with the extended command set: horizontal address mode and vertical address mode.

In the horizontal address mode (V = 0) the X address increments after each byte. After the last X address, X wraps around to 0 and Y increments to address the next row; see <u>Figure 7</u>. The number of columns (last X address) after which the wrap around must occur can be programmed. In <u>Figure 7</u> it can be seen that the X address is programmed as 127, and the Y address is programmed as 9. With X_{max} and Y_{max} the X and Y addresses can be programmed while the whole RAM is not being used.

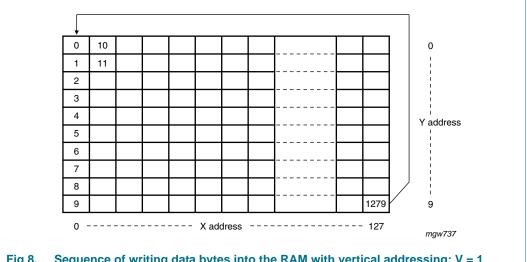
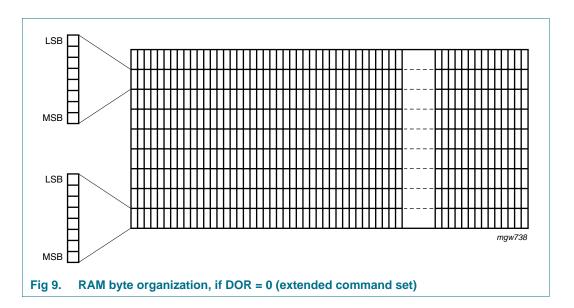
80 x 128 pixels matrix LCD driver

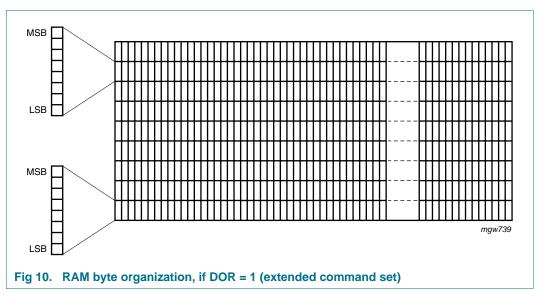
In the vertical addressing mode (V = 1) the Y address increments after each byte. After the last Y address (Y = 9), Y wraps around to 0 and X increments to address the next column; see <u>Figure 8</u>. The last Y address, after which Y wraps to 0, can be programmed. In <u>Figure 8</u> it can be seen that the X address is programmed as 127, and the Y address is programmed as 9. With X_{max} and Y_{max} the X and Y addresses can be programmed while the whole RAM is not being used.

After the very last address, the address pointers wrap around to address X = 0 and Y = 0 in both horizontal and vertical addressing modes.



Fig 7. Sequence of writing data bytes into the RAM with horizontal addressing; V = 0 (extended command set)

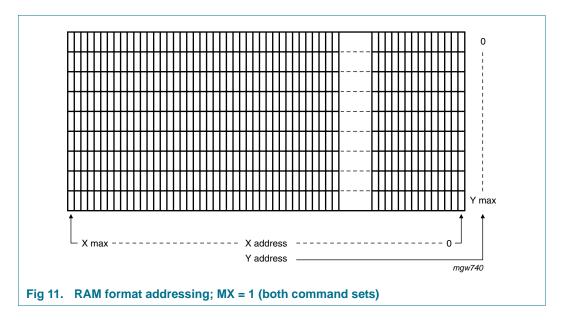



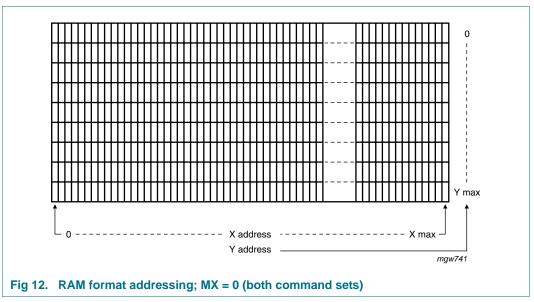

Fig 8. Sequence of writing data bytes into the RAM with vertical addressing; V = 1 (extended command set)

8.1.2.2 Data order

The data order bit (DOR) defines the bit order (LSB or MSB on top) for writing into the RAM; see <u>Figure 9</u> and <u>Figure 10</u>. This feature is only available in the extended command set.

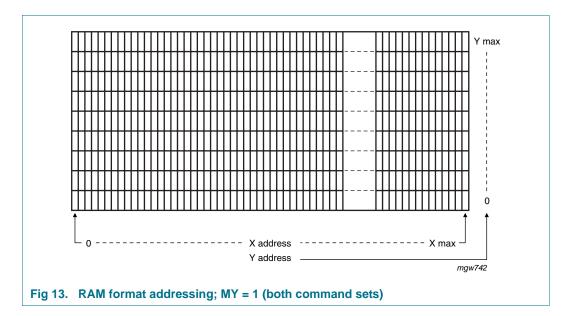
80 x 128 pixels matrix LCD driver

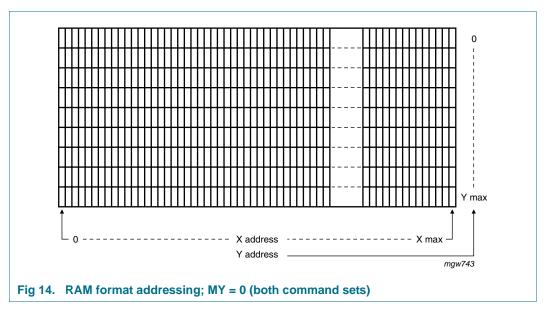




8.1.2.3 Features available in both command sets

Mirror X (MX): The MX bit allows horizontal mirroring: when MX = 1, the X address space is mirrored; the address X = 0 is then located at the right side (X_{max}) of the display; see <u>Figure 11</u>. When MX = 0, the mirroring is disabled and the address X = 0 is located at the left side (column 0) of the display; see <u>Figure 12</u>.


80 x 128 pixels matrix LCD driver



Mirror Y (MY): The MY bit allows vertical mirroring: when MY = 1, the Y address space is mirrored; the address Y = 0 is then located at the bottom of the display; see <u>Figure 13</u>. When MY = 0, the mirroring is disabled and the address Y = 0 is located at top of the display; see <u>Figure 14</u>.

The icon row, when enabled, is always located in bank 9 and row 79.

80 x 128 pixels matrix LCD driver

9. Parallel interface

The parallel interface, which can be selected, is the 6800 series 8-bit bidirectional interface for communication between the microcontroller and the LCD driver chip. The selection of this interface is achieved with pads PS2 to PS0; see Section 7.1.12.

9.1 6800 series parallel interface

The interface functions of the 6800 series parallel interface are given in Table 8.

Table 8. 6800 series parallel interface functions

D/C	R/W/WR	Operation
0	0	command data write
0	1	read status register
1	0	display data write
1	1	none

The parallel interface timing diagram for the 6800 series is shown in Figure 41.

80 x 128 pixels matrix LCD driver

10. Serial interfacing (SPI and serial interface)

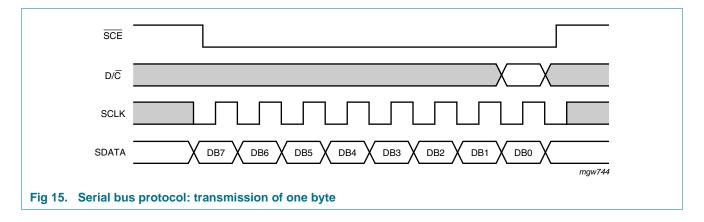
Communication with the microcontroller can also occur via a clock-synchronized Serial Peripheral Interface (SPI). It is possible to select between either a 3-line (SPI or serial interface) or a 4-line serial peripheral interface. Selection is achieved via pads PS2 to PS0; see Section 7.1.12).

10.1 Serial peripheral interface lines

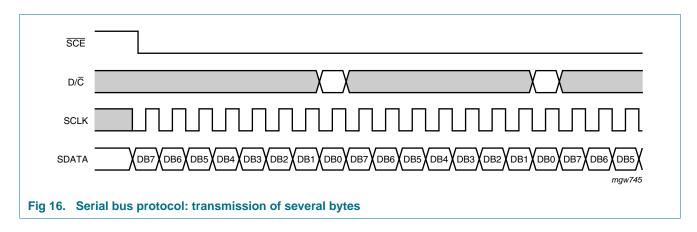
The serial peripheral interface is a 3-line or 4-line interface for communication between the microcontroller and the LCD driver chip. The 3 lines are:

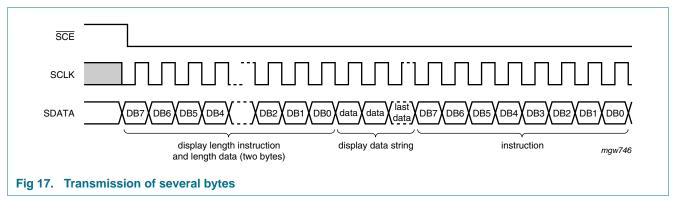
- SCE (chip enable)
- SCLK (serial clock)
- SDATA (serial data)

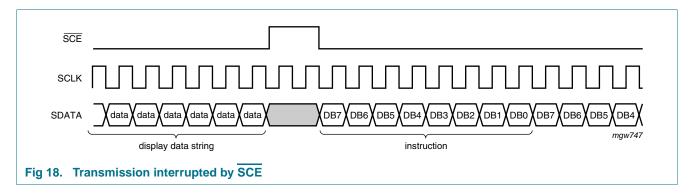
For the 4-line serial peripheral interface a separate D/\overline{C} line is added.


The PCF8811 is connected to the serial data I/O (SDA) of the microcontroller by connecting the two pads SDATA (data input) and SDO (data output) together.

10.1.1 Write mode


The display data/ $\overline{command}$ indication may be controlled either via software or the D/ \overline{C} select pad. When the D/ \overline{C} pad is used, display data is transmitted when D/ \overline{C} is HIGH, and command data is transmitted when D/ \overline{C} is LOW; see Figure 15 and Figure 16. When pad D/ \overline{C} is not used, the display data length instruction is used to indicate that a specific number of display data bytes (1 to 255) are to be transmitted; see Figure 17. The next byte after the display data string is handled as an instruction command.


When the 3-line SPI interface is used, the display data/command is controlled by software.


If SCE is pulled HIGH during a serial display data stream, the interrupted byte is invalid data but all previously transmitted data is valid. The next byte received will be handled as an instruction command; see Figure 18.

80 x 128 pixels matrix LCD driver

10.1.2 Read mode (only extended command set)

The read mode of the interface means that the microcontroller reads data from the PCF8811. To do so, the microcontroller first has to send a command (the read status command) and then the PCF8811 will respond by transmitting data on the SDO line. After that, $\overline{\text{SCE}}$ is required to go HIGH; see Figure 19.

The PCF8811 samples the SDATA data on rising SCLK edges, but shifts SDO data on falling SCLK edges. So, the microcontroller is supposed to read SDO data on rising SCLK edges.

After the read status command has been sent, the SDATA line must be set to 3-state not later then the falling SCLK edge of the last bit; see Figure 19.

Serial interface timing diagrams are shown in <u>Section 16.2</u>.

80 x 128 pixels matrix LCD driver

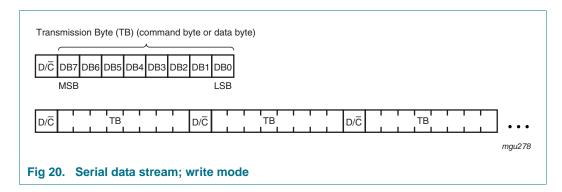
10.2 Serial interface (3-line)

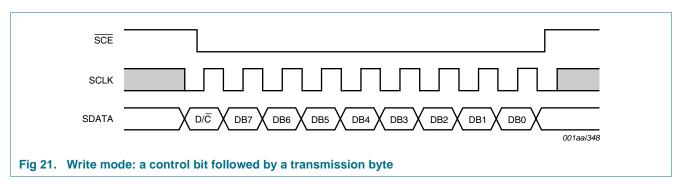
The serial interface is also a 3-line bidirectional interface for communication between the microcontroller and the LCD driver chip. The 3 lines are:

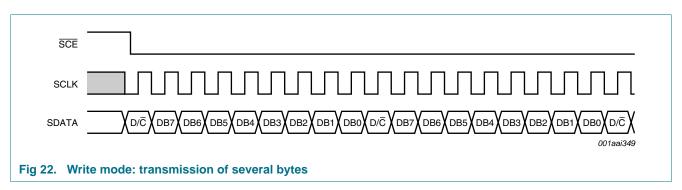
- SCE (chip enable)
- SCLK (serial clock)
- SDATA (serial data)

The PCF8811 is connected to the SDA of the microcontroller by two lines: SDATA (data input) and SDO (data output) which are connected together.

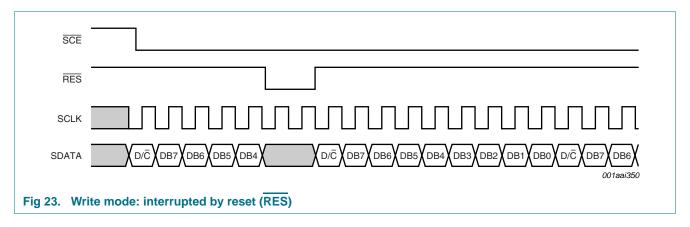
10.2.1 Write mode


The write mode of the interface means that the microcontroller writes commands and data to the PCF8811. Each data packet contains a control bit (D/\overline{C}) and a transmission byte. If D/\overline{C} is LOW, the following byte is interpreted as a command byte. The instruction set is shown in <u>Table 11</u>. If D/\overline{C} is HIGH, the following byte is stored in the display data RAM. After every data byte, the address counter is incremented automatically. <u>Figure 20</u> shows the general format of the write mode and the definition of the transmission byte.

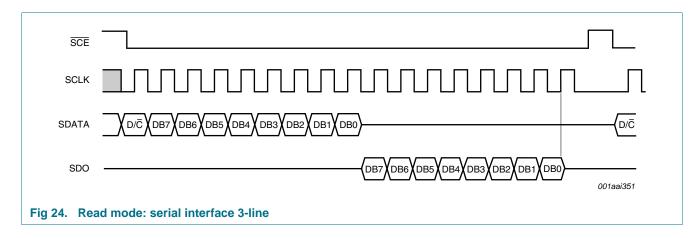

Any instruction can be sent in any <u>order</u> to the PCF8811; the MSB is transmitted first. The serial interface is initialized when <u>SCE</u> is HIGH. In this state, SCLK clock <u>pulses</u> have no effect and no power is consumed by the serial interface. A falling edge on <u>SCE</u> enables the serial interface and indicates the start of data transmission.


Figure 21, Figure 22 and Figure 23 show the protocol of the write mode:

- when SCE is HIGH, SCLK clocks are ignored; during the HIGH time of SCE the serial interface is initialized
- SCLK must be LOW on the falling SCE edge; see Figure 42
- SDATA is sampled on the rising edge of SCLK
- D/ \overline{C} indicates, whether the byte is a command (D/ \overline{C} = 0) or RAM data (D/ \overline{C} = 1); it is sampled on the first rising SCLK edge


- If SCE stays LOW after the last bit of a data/command byte, the serial interface receives the D/C bit of the next byte on the next rising edge of SCLK; see Figure 22
- A reset pulse RES interrupts the transmission. The data being written into the RAM may be corrupted. The registers are cleared. If SCE is LOW after the rising edge of RES, the serial interface is ready to receive the D/C bit of a data/command byte; see Figure 23.

80 x 128 pixels matrix LCD driver


10.2.2 Read mode (only extended command set)

The read mode of the interface means that the microcontroller reads data from the PCF8811. To do so, the microcontroller first has to send a command (the read status command) and then the following byte is transmitted in the opposite direction using SDO; see Figure 24. After that, SCE is required to go HIGH before a new command is sent.

The PCF8811 samples the SDATA data on the rising SCLK edges, but shifts SDO data on the falling SCLK edges. Thus the microcontroller is supposed to read SDO data on rising SCLK edges.

After the read status command has been sent, the SDATA line must be set to 3-state not later then the falling SCLK edge of the last bit; see Figure 24.

The 8th read bit is shorter than the others because it is terminated by the rising SCLK edge; see Figure 45. The last rising SCLK edge sets SDO to 3-state after the delay time t_4 .

80 x 128 pixels matrix LCD driver

11. I²C-bus interface

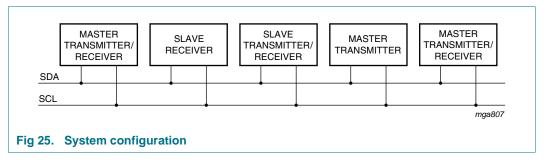
11.1 Characteristics of the I²C-bus

The I²C-bus is for bidirectional, two-line communication between different ICs or modules. Four operating speed modes are available:

- Standard-mode (Sm), with a bit rate up to 100 kbit/s
- Fast-mode (Fm), with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+), with a bit rate up to 1 Mbit/s
- **High-speed mode (Hs-mode)**, with a bit rate up to 3.4 Mbit/s.

Standard-mode, Fast-mode and Fast-mode Plus all use the same serial bus protocol and data format.

Hs-mode devices are fully downwards compatible, and can be connected to an F/S-mode I²C-bus system. As no master code will be transmitted in such a configuration (see Section 11.3) all Hs-mode master devices stay in F/S-mode and communicate at F/S-mode speeds with their current-source disabled. The SDAH and SCLH pins are used to connect to the F/S-mode bus system.

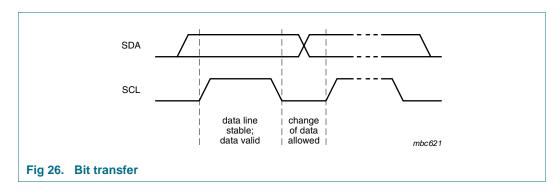

The PCF8811 is able to work in all speed modes including HS-mode. For using the HS-mode all components - including the master (see <u>Section 11.1.1</u>) - have to be able to run this mode. For more information about this, see <u>Ref. 10 "UM10204"</u>.

11.1.1 System configuration

The system configuration is shown in Figure 25.

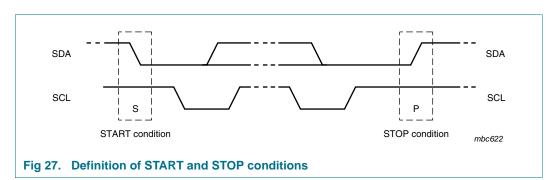
Definitions of the I²C-bus terminology:

- transmitter: the device which sends the data to the bus
- receiver: the device which receives the data from the bus
- master: the device which initiates a transfer, generates clock signals and terminates a transfer
- slave: the device addressed by a master
- multi-master: more than one master can attempt to control the bus at the same time without corrupting the message
- **arbitration:** procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted
- synchronization: procedure to synchronize the clock signals of two or more devices



PCF8811_5

80 x 128 pixels matrix LCD driver

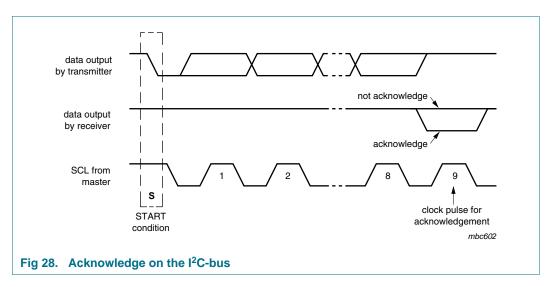

11.1.2 Bit transfer

One data bit is transferred during each clock pulse; see <u>Figure 26</u>. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

11.1.3 START and STOP conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW change of the data line, while the clock is HIGH, is defined as the START condition (S). A LOW-to-HIGH change of the data line, while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are shown in Figure 27.

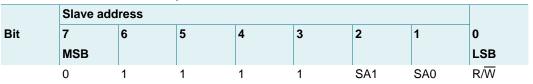
11.1.4 Acknowledge


The number of data bytes transferred between the START and STOP conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge cycle.

- A slave receiver which is addressed must generate an acknowledge after the reception of each byte
- Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter
- The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration)
- A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition

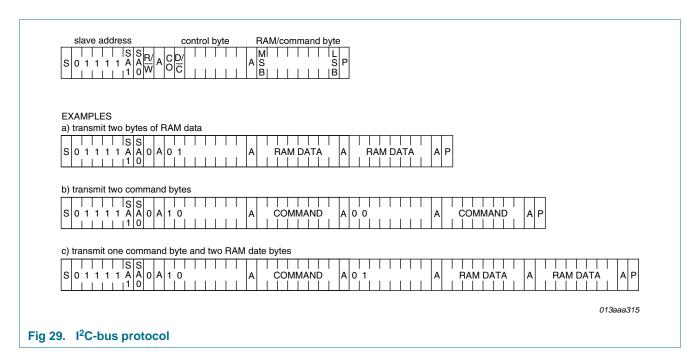
PCF8811_5

80 x 128 pixels matrix LCD driver


Acknowledgement on the I²C-bus is shown in Figure 28.

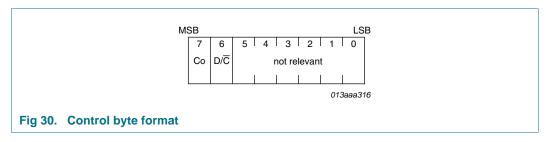
11.2 I²C-bus protocol

Four I²C-bus slave addresses (0111 100, 0111 101, 0111 110 and 0111 111) are reserved for the PCF8811.The entire I²C-bus slave address byte is shown in Table 9.


Table 9. I²C slave address byte

Bit 1 and bit 2 of the slave address byte, that a PCF8811 will respond to, are defined by the level tied to SA0 and SA1 (V_{SS} for logic 0 and V_{DD} for logic 1).

The I^2C -bus protocol is shown in <u>Figure 29</u>. The sequence is initiated with a START condition (S) from the I^2C -bus master which is followed by one of four possible PCF8811 slave addresses available. All slaves with the corresponding slave address acknowledge in parallel, all others ignore the I^2C -bus transfer.


80 x 128 pixels matrix LCD driver

After acknowledgement, one or more command words follow which define the status of the addressed slaves. A command word consists of a control byte, which defines bit Co and D/\overline{C} , plus a data byte (see Figure 29, Table 10 and Figure 30).

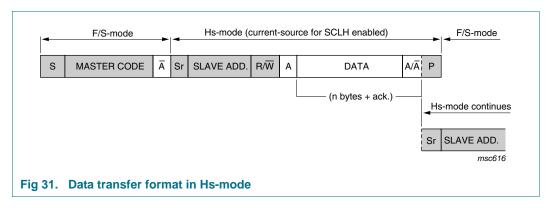
Table 10. Co and D/\overline{C} definitions

Table 10. Oo and 5/0 definitions				
Bit	Logic state	R/W	Action	
Co	0	0	last control byte to be sent; only a stream of data bytes are allowed to follow; this stream may only be terminated by a STOP or RESTART condition	
	1	0	another control byte will follow the data byte unless a STOP or RESTART condition is received	
D/C	0	0	data byte will be decoded and used to set-up the device	
		1	data byte will return the status byte	
	1	0	data byte will be stored in the display RAM	
		1	RAM read back is not supported	

Within the last control byte the Co bit is set logic 0. The command bytes and control bytes are also acknowledged by all addressed slaves connected to the bus. After the last control byte and depending on the D/\overline{C} bit setting, either a series of display data bytes or command data bytes may follow. If the D/\overline{C} bit was set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is

80 x 128 pixels matrix LCD driver

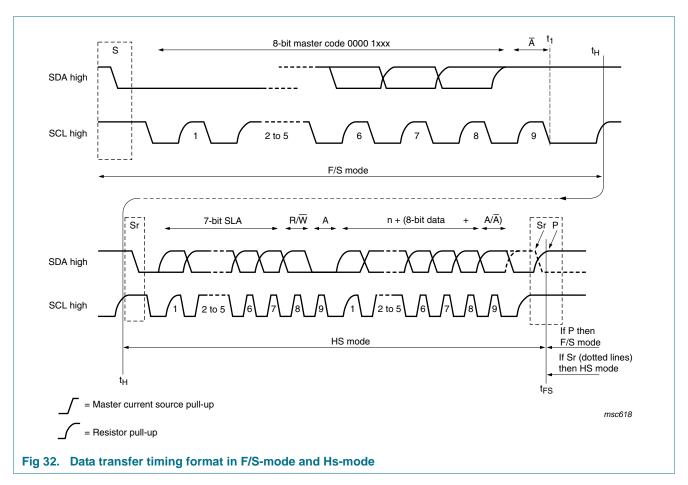
automatically updated and the data is directed to the intended PCF8811 device. If the DC bit of the last control byte was set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received commands. The acknowledgement after each byte is made only by the addressed PCF8811. At the end of the transmission, the I²C-bus master issues a STOP condition (P).


11.3 I²C-bus Hs-mode protocol

The PCF8811 is a slave receiver/transmitter. The SDAHOUT pad must be connected if data is to be read from the device or a write only configuration with acknowledge is desired.

Hs-mode can only commence after the following conditions:

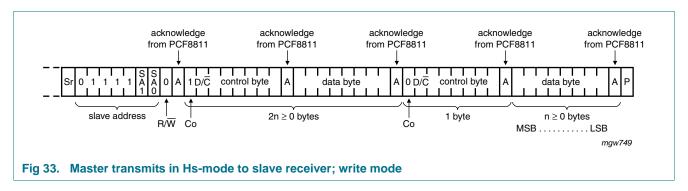
- START condition (S)
- 8-bit master code (0000 1xxx)
- Not-acknowledge bit (A)


The master code has two functions: it allows arbitration and synchronization between competing masters at F/S-mode speeds, resulting in one winner. The master code also indicates the beginning of an Hs-mode transfer. These conditions are shown in Figure 31 and Figure 32.

Hs-mode master codes are reserved 8-bit codes, which are not used for slave addressing or other purposes. Furthermore, as each master has its own unique master code, up to eight Hs-mode masters can be present on one I²C-bus system (although master code 0000 1000 should be reserved for test and diagnostic purposes). The master code for an Hs-mode master device is software programmable and is chosen by the system designer.

Arbitration and clock synchronization only take place during the transmission of the master code and not-acknowledge bit (\overline{A}) , after which one winning master remains active. The master code indicates to other devices that an Hs-mode transfer is to begin and the connected devices must meet the Hs-mode specification.

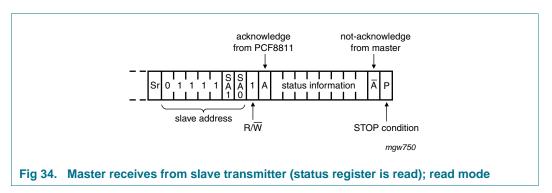
80 x 128 pixels matrix LCD driver


As no device is allowed to acknowledge the master code, the master code is followed by a not-acknowledge (\overline{A}) . After this \overline{A} and the SCLH line pulled up to a HIGH level, the active master switches to Hs-mode and enables at t_H the current-source pull-up circuit for the SCLH signal; see Figure 32.

The active master will then send a repeated START condition (Sr) followed by a 7-bit slave address with a R/\overline{W} bit, and receives an acknowledge bit (A) from the selected slave.

After each acknowledge bit (A) or not-acknowledge bit (\overline{A}) the active master disables its current source pull-up circuit. The active master re-enables its current source again when all devices have been released and the SCLH signal reaches a HIGH level. The rising of the SCLH signal is made by a pull-up resistor and therefore is slower, the last part of the SCLH rise time is speeded up because the current source is enabled. Data transfer only switches back to F/S-mode after a STOP condition (P).

A write sequence after the Hs-mode is selected is shown in <u>Figure 33</u>. The sequence is initiated with a START condition (S) from the I²C-bus master which is followed by the slave address. All slaves with the corresponding address acknowledge in parallel, the remainder will ignore the I²C-bus transfer.


80 x 128 pixels matrix LCD driver

After the acknowledgement cycle of a write (\overline{W}) , one or more command words will follow which define the status of the addressed slaves. A command word consists of a control byte, which defines continuation bit Co and $\overline{D/C}$, plus a data byte; see <u>Figure 33</u> and <u>Table 10</u>.

The last control byte is initiated by bit Co (a cleared MSB). The control and data bytes are also acknowledged by all addressed slaves on the bus.

A read sequence is shown in Figure 34 and again this sequence follows after the Hs-mode is selected. The PCF8811 will immediately start to output the requested data until a not-acknowledge is transmitted by the master. Before the read access, the user has to set the D/\overline{C} bit to the appropriate value by a preceding write access. The write access must be terminated by a RESTART condition so that the Hs-mode is not disabled.

After the last control byte, depending on the D/\overline{C} bit setting, either a series of display data bytes or command data bytes may follow. If the D/\overline{C} bit was set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer.

The data pointer is automatically updated and the data is directed to the intended PCF8811 device. If the D/\overline{C} bit of the last control byte was set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received commands. The acknowledgement after each byte is made only by the addressed PCF8811. At the end of the transmission the I^2C -bus master issues a STOP condition (P) and switches back to the F/S-mode, however, to reduce the overhead of the master code, it is possible that a master can link a number of Hs-mode transfers, separated by repeated START conditions (Sr).

PCF8811 NXP Semiconductors

80 x 128 pixels matrix LCD driver

11.4 Command decoder

The command decoder identifies command words that are received on the I²C-bus:

- pairs of bytes: information in second byte, first byte determines whether information is display or instruction data
- Stream of information bytes after Co = 0: display or instruction data depending on last D/\overline{C}

The most significant bit of a control byte is the continuation bit Co. If this bit is at logic 1, it indicates that only one data byte, either command or RAM data, will follow. If this bit is at logic 0, it indicates that a series of data bytes, either command or RAM data, may follow. The DB6 bit of a control byte is the RAM data/command bit D/C. When this bit is at logic 1, it indicates that a RAM data byte will be transferred next. If the bit is at logic 0, it indicates that a command byte will be transferred next.

80 x 128 pixels matrix LCD driver

12. Instructions

The PCF8811 interfaces via an 8-bit parallel interface, two different 3-line serial interfaces, a 4-wire serial interface or an I²C-bus interface. Processing of the instructions does not require the display clock.

Data accesses to the PCF8811 can be broken down into two areas: those that define the operating mode of the device, and those that fill the display RAM.

In the case of the parallel and 4-wire SPI interfaces, the distinction is the D/\overline{C} pad. When the D/\overline{C} pad is at logic 0, the chip will respond to instructions as defined in <u>Table 11</u>. When the D/\overline{C} bit is at logic 1, the chip will send data to the RAM.

When the 3-wire SPI, the 3-wire serial interface or the I^2C -bus interface is used, the distinction between instructions which define the operating mode of the device and those that fill the display RAM, is made respectively by the display data length instruction (3-line SPI) or by the D/C bit in the data stream (3-line serial interface and I^2C -bus interface).

There are 4 types of instructions. Those which:

- 1. Define the PCF8811 functions, such as display configuration etc.
- 2. Set internal RAM addresses
- 3. Perform data transfer with internal RAM
- 4. Others.

In normal use, category 3 instructions are used most frequently.

A basic and an extended instruction set is available. If the EXT pad is set LOW the basic command set is used. If the EXT pad is set HIGH the extended command set is used. Both command sets are detailed in Table 11.

Table 11. Instruction set[1] Instruction Pad				Comma	and byte	е		Command byte							
	EXT[2]	D/C	R/W/WR	DB7[3]	DB6	DB5	DB4	DB3	DB2	DB1	DB0	_			
NOP	X	0	0	0	1	0	0	1	1	Χ	Х	no operation			
	Χ	0	0	1	1	1	0	0	1	0	0				
Reset	Х	0	0	1	1	1	0	0	0	1	0	soft reset			
Write data	Χ	1	0	D7	D6	D5	D4	D3	D2	D1	D0	write data to display RAM			
Display data length	Х	0	0	1	1	1	0	1	0	0	0	only used in 3-line SPI			
	X	0	0	D7	D6	D5	D4	D3	D2	D1	D0				
Status read	Х	0	1	BUSY	DON	RES	MF2	MF1	MF0	DS1	DS0	read status byte			
	X	0	Χ	1	1	0	1	1	0	1	Χ	read status byte			
Display control	Χ	0	0	1	0	1	0	1	1	1	DON	display on or off			
	X	0	0	1	0	1	0	0	1	1	Е	normal or reverse mode			
	X	0	0	1	0	1	0	0	1	0	DAL	all pixels on or off			
	X	0	0	1	0	1	0	0	0	0	MX	mirror X			
	X	0	0	1	1	0	0	MY	Χ	Χ	Χ	mirror Y			
	1	0	0	1	1	1	0	1	1	1	IC	icon enable or disable ^[4]			
	1	0	0	1	0	1	0	0	0	1	V	vertical or horizontal addressing[4]			
	1	0	0	1	1	1	0	1	0	1	DOR	data order ^[4]			
	1	0	0	1	1	1	0	1	1	0	BRS	bottom row swap[4]			
Address commands	Χ	0	0	1	0	1	1	Y_3	Y_2	Y ₁	Y_0	set Y address; $0 \le Y \le 9$			
	X	0	0	0	0	0	1	0	X_6	X_5	X_4	set X address; $0 \le X \le 127$			
	X	0	0	0	0	0	0	X_3	X_2	X_1	X_0				
	X	0	0	0	0	0	1	1	0	0	1	set Y_{max} ; $0 \le Y \le 9$			
		0	0	Χ	Χ	Χ	Χ	Y_{max3}	Y_{max2}	Y_{max1}	Y _{max0}				
	X	0	0	0	0	0	1	1	0	0	0	set X_{max} ; $0 \le X \le 127$			
				Χ	X_{max6}	X_{max5}	X_{max4}	X_{max3}	X_{max2}	X_{max1}	$X_{\text{max}0}$				
Set initial display line	X	0	0	0	1	0	0	0	0	Χ	Χ	set initial display line; $0 \le L \le 79^{[5]}$			
	X	0	0	Χ	L_6	L_5	L_4	L_3	L_2	L ₁	L_0				
Set initial row	Χ	0	0	0	1	0	0	0	1	Х	Х	set start row; 0 ≤ C ≤ 79[6]			

 C_5

 C_6

Χ

0

Χ

0

 C_4

 C_3

 C_2

 C_1

 C_0

Product data sheet

Table 11.	Instruction	set[1]	continued
-----------	-------------	--------	-----------

Instruction	Pad	Pad			Command byte							Description
	EXT[2]	D/C	R/W/WR	DB7[3]	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Set-partial-display	X	0	0	0	1	0	0	1	0	Х	Х	set partial display 1:16 to 1:80
	X	0	0	X	P ₆	P ₅	P_4	P_3	P_2	P ₁	P_0	
V _{OP} setting	0	0	0	1	0	0	0	0	0	0	1	set V _{OP} [7][8]
	0	0	0	X	Χ	V_{PR5}	V_{PR4}	V_{PR3}	V_{PR2}	V_{PR1}	V_{PR0}	
	0	0	0	0	0	1	0	0	V_{OFF2}	V_{OFF1}	V_{OFF0}	offset for V _{OP} [7][8]
	1	0	0	1	0	0	0	0	0	0	1	set V _{OP} [4]
	1	0	0	V_{PR7}	V_{PR6}	V_{PR5}	V_{PR4}	V_{PR3}	V_{PR2}	V_{PR1}	V_{PR0}	
Power control	Χ	0	0	0	0	1	0	1	PC ₁	PC_0	1	switch HVgen on/off
HVgen stages	0	0	0	0	1	1	0	0	1	S_1	S_0	set multiplication factor
	1	0	0	0	1	1	0	0	S_2	S_1	S_0	set multiplication factor ^[4]
FR	1	0	0	0	0	0	1	1	1	FR_1	FR_0	set frame rate frequency[4]
TC[9]	1	0	0	0	0	1	1	1	TC_2	TC ₁	TC_0	set temperature coefficient[4]
Bias system	0	0	0	0	1	0	1	0	BS_2	BS ₁	BS_0	set bias system[10]
Manual p value (p = 4)	1	0	0	0	0	0	1	1	0	1	MP	set manual p value[4][11]
Power-save on	Χ	0	0	1	0	1	0	1	0	0	1	power-save mode
Power-save off	Χ	0	0	1	1	1	0	0	0	0	1	exit power-save mode
Internal oscillator	Χ	0	0	1	0	1	0	1	0	1	os	switch internal oscillator on/off
Internal oscillator	1	0	0	1	1	1	0	0	1	1	EC	enable or disable the internal or external oscillator [4]
Enter CALMM mode	Х	0	0	1	0	0	0	0	0	1	0	enter CALMM mode
Reserved	X	0	0	0	0	1	0	1	Χ	Χ	0	reserved
Reserved	X	0	0	0	1	1	1	Χ	Χ	Χ	Χ	reserved
Test	X	0	0	1	1	1	1	Χ	Χ	Χ	Χ	do not use; reserved for testing

^[1] X =value without meaning.

B.V. 2010. All rigi

^[2] NXP Semiconductors recommends that the extended command set be used.

^[3] D7 = MSB.

^[4] Commands only available with the extended command set, EXT = 1. If EXT = 0 these commands have no effect.

^[5] When the icon mode is enabled the set initial display line $0 \le L \le 78$.

^[6] When the icon mode is enabled the set initial row line $0 \le C \le 78$.

^[7] Commands only used for the basic command set EXT = 0. If EXT = 1 these commands have no effect. It must be checked, when setting V_{OP} in the basic command set that it is followed by another command.

80 x 128 pixels matrix LCD driver

- a) V_{PR}[5:0]
- b) V_{OFF}[2:0]
- c) must be followed by another command.
- [9] One fixed TC is set automatically if the basic command set is used.
- [10] Without function; implemented for compatibility with the Alt-Pleshko driver instruction set.
- [11] Only for multiplex rates 1:64 and 1:80. The number of simultaneous rows can be set manually to p = 4; see Table 19.

80 x 128 pixels matrix LCD driver

12.1 Instruction set commands

12.1.1 Common instructions of the basic and extended command set

Table 12. Common commands

Bit	Logic 0	Logic 1		Reset state
DON	display off	display on		0
E	normal display	inverse video mode		0
DAL	normal display	all pixels on		0
MX	no X mirroring	X mirroring		0
MY	no Y mirroring	Y mirroring		0
OC	stop frame frequency calibration	start frame frequency calibration		0
OS	internal oscillator off	start internal oscillator		0
X[6:0]	set X address (column) t	for writing in the RAM		000 0000
Y[3:0]	set Y address (bank) for	writing in the RAM		0000
X _{max[6:0]}	set wrap around X addre	ess (column)		111 1111
Y _{max[3:0]}	set wrap around Y addre	ess (bank)		1001
L[6:0]	sets line address of the c cannot access the icon c icon row is enabled			000 0000
C[6:0]	sets the initial row 0 of th cannot access the icon icon row is enabled			000 0000
P[6:0]	partial display mode 1:16	6 to 1:80	[1]	101 0000 (1:80)/100 0000 (1:64)
PC[1:0]	switch HV multiplier on/o	off		00
S[1:0]	charge pump multiplicati	on factor		00

^[1] Partial displays can be selected in steps of 8, when the icon mode is not selected. When the icon mode is selected, partial displays can be selected in steps of 16. For example, without icons the available partial display sizes are 8, 16, 24, 32, 40, 48, 56, 64 or 72 lines. With icons there are 16, 32, 48 or 64 lines possible.

Table 13. Power control register[1]

PC[1:0]	Description
00	HVgen off
X1	HVgen on
1X	HVgen on

^[1] X = value without meaning.

80 x 128 pixels matrix LCD driver

Table 14. Power-save mode (PSM), OS, DON, DAL and E combinations[1]

PSM	os	DON	DAL	E	Description
Off	0	Χ	Χ	Χ	oscillator off; HVgen disabled
Off	1	Χ	0	Χ	oscillator on; HVgen disabled
Off	1	0	1	X	display off; pads Rn/Cn at V _{SS} ; oscillator off; HVgen disabled ^[2]
Off	1	1	0	0	normal display mode
Off	1	1	0	1	inverse display mode
Off	1	1	1	X	all pixels on[3]
On	X	X	X	X	power-save mode: display off; pads Rn/Cn at V_{SS} ; oscillator off; HVgen disabled

^[1] X =value without meaning.

Table 15. Read status byte

Bit	Description
BUSY	if BUSY = 0 the chip is able to accept new commands
DON	same bit as in Table 14
RES	if RES = 1 a reset is in progress
MF[2:0]	device manufacturer ID
DS0	device recognition; see Table 16

Table 16. Device recognition[1]

DS0	Description
0	64 row driver
1	80 row driver

^[1] This is the only default setting after reset; another setting can be selected with the set-partial-display-mode command.

Table 17. Multiplication settings

S[1:0]	Description
00	4 × voltage multiplier
01	5 × voltage multiplier
10	6 × voltage multiplier
11	7 × voltage multiplier

12.1.2 Specific commands of the basic command set

Table 18. Specific basic commands

Bit	Description	Reset state
V _{PR} [5:0]	programming value of V_{LCD}	00 0000
V _{OFF} [2:0]	offset for the programming value of V_{LCD}	000

^[2] Bit DON can only be addressed after bit DAL is activated.

^[3] Bit DAL has priority over bit E.

80 x 128 pixels matrix LCD driver

12.1.3 Specific commands of the extended command set

Table 19. Specific extended commands

Bit	Logic 0	Logic 1	Reset state
$V_{PR}[7:6] + V_{PR}[5:0]$	programming value of V	LCD	000 0000
FR[1:0]	frame rate frequency		11
TC[2:0]	temperature coefficient		010
S[2:0]	charge pump multiplicat	ion factor	100
V	horizontal addressing	vertical addressing	0
DOR	LSB at top	MSB at top	0
IC	no icon row (multiplex rate 1:16 to 1:80)	icon row (multiplex rate 1:16 to 1:80)	0
BRS	bottom rows are not mirrored	bottom rows are mirrored	0
MP[1]	multiplex rate driven p value (automatic)	p = 4 selected for multiplex rate 1:64 and 1:80	0
EC	use internal oscillator	use external oscillator	0

^[1] The default value for MP (Manual P) equals 0 and it is recommended to use that value as a starting point. However, depending on the liquid crystal properties, p = 4 may be a better choice and it is recommended to compare optical results for the automatically chosen value for p and for p=4 and use the one that gives best results.

Table 20. Frame rate frequency

FR[1:0]	Frame rate frequency
00	30 Hz
01	40 Hz
10	50 Hz
11	60 Hz

Table 21. Temperature coefficient[1]

TC[2:0]	Temperature coefficient
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

^[1] For further information about temperature coefficient, see $\underline{\text{Table 31}}$.

80 x 128 pixels matrix LCD driver

Table 22. Multiplication settings

S[2:0]	Description
000	2 × voltage multiplier
001	3 × voltage multiplier
010	4 × voltage multiplier
011	5 × voltage multiplier
100	4 × voltage multiplier
101	5 × voltage multiplier
110	6 × voltage multiplier
111	7 × voltage multiplier

12.2 Initialization

Reset is accomplished by applying an external reset pulse (active LOW) at pad RES. When reset occurs within the specified time, all internal registers are reset, however the RAM is still undefined. The state after reset is described in Section 12.3. Pad RES must be $\leq 0.3~V_{DD1}$ when V_{DD1} reaches $V_{DD(min)}$ (or higher) within a maximum time t_{VHRL} after V_{DD1} goes HIGH; see Figure 48.

A reset can also be achieved by sending a reset command. This command can be used during normal operation but not to initialize the chip after power-on.

12.3 Reset function

12.3.1 Basic command set

After reset the LCD driver has the following state:

- Display setting E = 0 and DAL = 0
- Address commands X[6:0] = 0 and Y[3:0] = 0
- V_{LCD} is equal to 0, the HV multiplier is switched off (PC[1:0] = 00)
- No offset of the programming range (V_{OFF}[2:0] = 0)
- HV multiplier programming (V_{PR}[5:0] = 0)
- 4 × voltage multiplier (S[1:0] = 00)
- After power-on, RAM data is undefined, the reset signal does not change the content of the RAM
- All LCD outputs at V_{SS} (display off)
- Initial display line set to line 0 (L[6:0] = 0)
- Initial row set to row 0 (C[6:0] = 0)
- Full display selected (P[6:0] = multiplex rate 1:80 or 1:64)
- Display is not mirrored (MX = 0; MY = 0)
- Internal oscillator is off
- Power-save mode is on
- · No frame calibration is running

80 x 128 pixels matrix LCD driver

12.3.2 Extended command set

After reset the LCD driver has the following state:

- Display settings E = 0 and DAL = 0
- Icons disabled (IC = 0)
- Address counter X[6:0] = 0 and Y[3:0] = 0
- Temperature control mode TC2 (TC[2:0] = 010)
- V_{LCD} is equal to 0 V; the HV multiplier is switched off (PC[1:0] = 0)
- HV multiplier programming (V_{PR}[7:0] = 0)
- 4 × voltage multiplier (S[2:0] = 100)
- Frame-rate frequency (FR[1:0] = 11)
- After power-on, RAM data is undefined, the reset signal does not change the content of the RAM
- All LCD outputs at V_{SS} (display off)
- Full display selected (P[6:0] = multiplex rate 1:80 or 1:64)
- Initial display line set to line 0 (L[6:0] = 0)
- Initial row set to row 0 (C[6:0] = 0)
- Display is not mirrored (MX = 0; MY = 0)
- · Internal oscillator is off
- Power-save mode is on
- Horizontal addressing enabled (V = 0)
- No data order swap (DOR = 0)
- No bottom row swap (BRS = 0)
- Internal oscillator enabled (EC = 0)
- No frame calibration running (OC = 0)

12.4 Power-save mode

In the power-save mode the LCD driver has the following state:

- All LCD outputs at V_{SS} (display off)
- Bias generator and V_{LCD} generator switched off; external V_{LCD} can be disconnected
- Oscillator off (external clock possible)
- RAM contents not cleared; RAM data can be written
- V_{LCD} discharged to V_{SS} in power-down mode

There are two ways to put the chip into power-save mode:

- The display must be off (DON = 0) and all the pixels on (DAL = 1)
- The power-save mode command is activated

12.5 Display control

The bits DON, E and DAL select the display mode; see Table 14.

80 x 128 pixels matrix LCD driver

12.5.1 Bit MX

When MX = 0 the display RAM is written from left to right (X = 0 is on the left side and X = X_{max} is on the right side of the display).

When MX = 1 the display RAM is written from right to left (X = 0 is on the right side and $X = X_{max}$ is on the left side of the display).

The MX bit has an impact on the way the RAM is written to. So if a horizontal mirroring of the display is desired, the RAM must first be rewritten, after changing the MX bit.

12.5.2 Bit MY

When MY = 1, the display is mirrored vertically. A change to this bit has an immediate effect on the display.

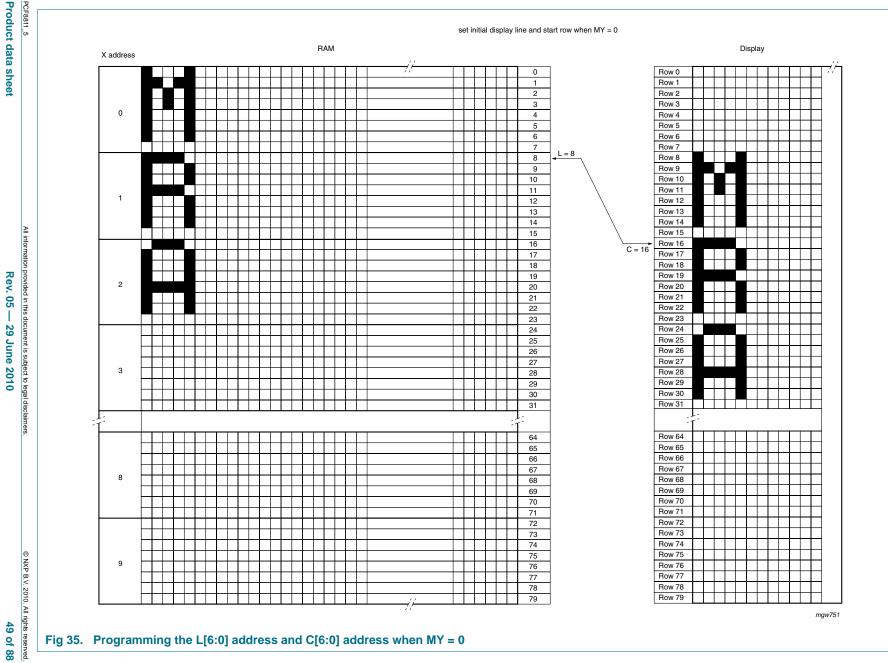
12.6 Set Y address of RAM

Y[3:0] defines the Y address of the display RAM. When the icon row (row 79) is enabled it will always be in bank 9 independent of the multiplex rate which is programmed

Y3	Y2	Y1	Y0	Content	Allowed X range
0	0	0	0	bank 0 (display RAM)	0 to 127
0	0	0	1	bank 1 (display RAM)	0 to 127
0	0	1	0	bank 2 (display RAM)	0 to 127
0	0	1	1	bank 3 (display RAM)	0 to 127
0	1	0	0	bank 4 (display RAM)	0 to 127
0	1	0	1	bank 5 (display RAM)	0 to 127
0	1	1	0	bank 6 (display RAM)	0 to 127
0	1	1	1	bank 7 (display RAM)	0 to 127
1	0	0	0	bank 8 (display RAM)	0 to 127
1	0	0	1	bank 9 (display RAM)	0 to 127

12.7 Set X address of RAM

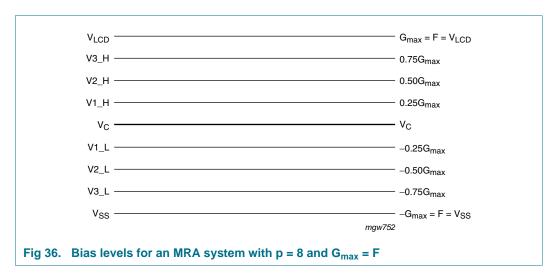
The X address points to the columns. The range of X is 0 to 127 (7Fh).


12.8 Set display start line

L[6:0] (see <u>Table 12</u>) is used to select the display line address of the display RAM to be displayed on the initial row, row 0. The selection of L[6:0] is limited to steps of 8. When the icon row is selected, the selection of L[6:0] is limited to steps of 16. When a partial mode is selected, the selection of L[6:0] is also limited in steps. In addition, the selection of L[6:0] = 72 is not allowed when the icon row is enabled or disabled.

The initial row can, in turn, be set by C[6:0]; see <u>Table 12</u>. Row 0 cannot be set to icon row 79 when enabled.

An example of the mapping from the RAM content to the display is shown in <u>Figure 35</u>. The content of the RAM is not modified. This feature allows, for instance, screen scrolling without rewriting the RAM.


80 x 128 pixels matrix LCD driver

80 x 128 pixels matrix LCD driver

12.9 Bias levels

The bias levels for a MRA (Multiple Row Addressing) driving method with p = 8 are given in Figure 36 when G_{max} and F have the same value. The value p defines the number of rows which are simultaneously selected.

The row voltage F depends on the multiplex rate selected (number of rows N), the threshold voltage of the liquid (V_{TH}), the number of simultaneously selected rows (p) and the multiplexibility (m):

$$F = \frac{1}{\sqrt{p}} \times V_{TH} \times \sqrt{\frac{N}{2}} \times \frac{\sqrt{m} \pm \sqrt{m-N}}{\sqrt{m} - 1}$$
 (1)

Concerning the plus/minus sign in Equation 1 usually the plus sign is used. In the case that m = N, the term after the plus/minus sign becomes 0 and disappears from the equation. For specific displays, m could be larger than N: e.g. if the liquid-crystal material used allows multiplexing of more rows than denoted by N, then the equation for F can be used with the minus sign. This leads to a lower row voltage and a higher column voltage. As a consequence, the necessary supply voltage, which would be required for Alt-Pleshko driving, can be reduced for displays with m > N by using PCF8811 with MRA.

The column voltages are situated around the common level V_C . The column voltage levels are equidistant from each other. In <u>Table 24</u> the column voltage levels are given as a function of F.

The row voltages (F) are not necessarily larger then the column voltages. This depends on the number of rows which are selected, the multiplexibility and the value of p. However, the PCF8811 is designed in such a way that the maximum column voltages are always equal to the row voltages. In <u>Table 24</u> the V_{LCD} and the different bias levels are given for the PCF8811.

80 x 128 pixels matrix LCD driver

Table 24. Bias levels for MRA driving method $F = G_{max}$.

Symbol	Bias voltages	DC shifted bias voltages
V_{LCD}	F	V_{LCD}
V3_H	$(p-2) \times \frac{F}{\sqrt{m} - \sqrt{m-N}}$	$\frac{V_{LCD}}{2} \times \left(1 + \frac{(p-2)}{\sqrt{m} - \sqrt{m-N}}\right)$
V2_H	$(p-4) \times \frac{F}{\sqrt{m}-\sqrt{m-N}}$	$\frac{V_{LCD}}{2} \times \left(1 + \frac{(p-4)}{\sqrt{m} - \sqrt{m-N}}\right)$
V1_H	$(p-6) \times \frac{F}{\sqrt{m}-\sqrt{m-N}}$	$\frac{V_{LCD}}{2} \times \left(1 + \frac{(p-6)}{\sqrt{m} - \sqrt{m-N}}\right)$
V _C	0	$\frac{V_{LCD}}{2}$
V1_L	$-(p-6)\times\frac{F}{\sqrt{m}-\sqrt{m-N}}$	$\frac{V_{LCD}}{2} \times \left(1 - \frac{(p-6)}{\sqrt{m} - \sqrt{m-N}}\right)$
V2_L	$-(p-4)\times\frac{F}{\sqrt{m}-\sqrt{m-N}}$	$\frac{V_{LCD}}{2} \times \left(1 - \frac{(p-4)}{\sqrt{m} - \sqrt{m-N}}\right)$
V3_L	$-(p-2)\times \frac{F}{\sqrt{m}-\sqrt{m-N}}$	$\frac{V_{LCD}}{2} \times \left(1 - \frac{(p-2)}{\sqrt{m} - \sqrt{m-N}}\right)$
V_{SS}	− F	V _{SS}

The parameter F in <u>Table 24</u> is a mathematical function that can produce positive values only. The resulting bias voltages in <u>Figure 36</u> and <u>Table 24</u> can have both positive and negative values, with the largest absolute value equal to F. However, the PCF8811 uses only positive supplies. If the calculated F values get DC-shifted such that all values are positive, the common voltage V_C must be equal F. Then the DC-shifted bias voltages will not range from –F to +F, but from 0 to 2F and thus V_{LCD} will be like in <u>Equation 2</u>:

$$V_{LCD} = 2F (2)$$

Table 25. Relationship between multiplex rates and bias setting variables without icon row

Variable										
N	m	p								
16	25	2								
24	49	2								
32	81	2								
40	49	4								
48	64	4								
56	81	4								
64	64	8								
72	81	8								
80	81	8								
	N 16 24 32 40 48 56 64 72	N m 16 25 24 49 32 81 40 49 48 64 56 81 64 64 72 81								

80 x 128 pixels matrix LCD driver

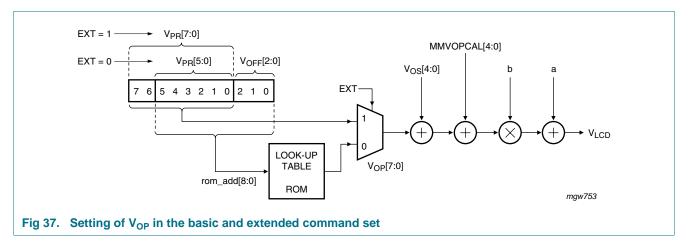
The bias system settings for different display modes are given in <u>Table 25</u>. All bias levels can be calculated by using the third column of <u>Table 24</u> and the variables given in <u>Table 25</u>. Programming of the bias levels is not necessary in the PCF8811. The selection of the appropriate bias level voltages for each display mode is made automatically. Only the appropriate V_{LCD} voltage must be programmed according to <u>Equation 1</u> and <u>Equation 2</u> for the display modes listed in <u>Table 25</u>.

The variables for calculating V_{LCD} , when the icon row is enabled, are given in <u>Table 26</u>. The icon row can only be addressed in the extended command set.

The PCF8811 allows the value of p for certain multiplex rates to be chosen manually. This is only possible for the multiplex rates 1:64 and 1:80. If other multiplex rates are chosen the PCF8811 determines the optimum value of p. By setting the value of p manually a compromise can be made between contrast and power consumption with certain liquids for the high multiplex rates 1:64 and 1:80. However, care must be taken that the liquid which is chosen ensures that the row voltages (F) and the maximum column voltages are equal.

Table 26. Relationship between multiplex rates and bias setting variables with the icon row (only extended command set)

Multiplex rate	Variable	Variable								
	N	m	р							
1:16	24	49	2							
1:32	40	49	4							
1:48	56	81	8							
1:64	80	81	8							
1:80	80	81	8							


12.10 Set V_{OP} value

For multiplex rate 1:80 the optimum operation voltage of a liquid can be calculated with the variables given in <u>Table 26</u>, <u>Equation 1</u> and <u>Equation 2</u>. Where V_{TH} is the threshold voltage of the liquid crystal material used.

$$V_{LCD} = \frac{2}{\sqrt{8}} \times V_{TH} \times \sqrt{\frac{80}{2} \times \frac{\sqrt{81} - \sqrt{81 - 80}}{\sqrt{81} - 1}} = 4.472 \times V_{TH}$$
 (3)

The programming method for the V_{OP} value is implemented differently in the basic command set from that in the extended command set. In the basic command set two commands are sent to the PCF8811: namely $V_{PR}[5:0]$ and $V_{OFF}[2:0]$. In the extended command set only one command $V_{PR}[7:0]$ is sent to the PCF8811. The programming of V_{OP} in the basic command set can be used when the PCF8811 is used as a replacement for an IAPT (Improved Alt-Pleshko Technique) LCD driver. The ROM look-up table Table 29 shows the possible values for $V_{OFF}[2:0]$, $V_{PR}[5:0]$, $V_{OP}[7:0]$ and V_{LCD} .

80 x 128 pixels matrix LCD driver

12.10.1 Basic command set

The V_{LCD} at $T = T_{CUT}$ in the basic command set is determined by the conversion in the ROM look-up table with the programmed values of $V_{PR}[5:0]$ and $V_{OFF}[2:0]$. It can, additionally, be adjusted with the V_{LCD} offset pads $V_{OS}[4:0]$ to obtain the optimum optical performance.

Example: To get the value of 6 V for V_{LCD} the following values have to be taken; see Table 27.

Table 27. Example values of V_{PR} , V_{OP} and V_{OFF} for $V_{LCD} = 6 \text{ V}$

Register	Value in <u>Table 29</u>	Binary value
V _{PR} [5:0]	15	0 1111
V _{OP} [7:0]	100	110 0100
V _{OFF} [2:0]	010	010

Instead of using the V_{LCD} offset pads ($V_{OS}[4:0]$) the V_{LCD} can be adjusted with the module maker calibration setting MMVOPCAL[4:0]; see Section 18.

$$V_{LCD(T=T_{CUT})} = a + (V_{OS}[4:0] + V_{OP}[7:0]) \times b$$
 (4)

Where:

- T_{CUT} is a reference temperature; see <u>Section 12.11</u>
- a is a fixed constant value; see Table 28
- b is a fixed constant value; see Table 28
- V_{OP}[7:0] is the result of the conversion table
- V_{OS}[4:0]/MMVOPCAL[4:0] is the value of the offset V_{LCD} pads or the value stored in the OTP cells

Table 28. Parameters of V_{LCD} for the basic and extended command set

Symbol	Value	Unit
T _{CUT}	40	°C
b	0.03	V
а	3	V

PCF88	Table 29. ROM look-up table with values of V _{OFF} , V _{PR} , V _{OP} and V _{LCD}																							
11_5	V _{OFF} [000]		V _{OFF} [001]		V _{OFF}	[010]		V _{OFF} [011]		V _{OFF} [[100]		V _{OFF} [101]		V _{OFF} [110]		V _{OFF} [111]	
	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)
	0	13	3.39	0	48	4.44	0	82	5.46	0	116	6.48	0	150	7.5	0	185	8.55	0	219	9.57	0	253	10.59
	1	14	3.42	1	49	4.47	1	83	5.49	1	118	6.54	1	152	7.56	1	187	8.61	1	221	9.63	1	256	10.68
	2	15	3.45	2	50	4.5	2	84	5.52	2	119	6.57	2	154	7.62	2	189	8.67	2	223	9.69	2	256	10.68
	3	15	3.45	3	51	4.53	3	86	5.58	3	121	6.63	3	156	7.68	3	191	8.73	3	226	9.78	3	256	10.68
	4	16	3.48	4	52	4.56	4	87	5.61	4	122	6.66	4	157	7.71	4	192	8.76	4	228	9.84	4	256	10.68
	5	17	3.51	5	53	4.59	5	88	5.64	5	123	6.69	5	159	7.77	5	194	8.82	5	230	9.9	5	256	10.68
	6	18	3.54	6	54	4.62	6	89	5.67	6	125	6.75	6	161	7.83	6	196	8.88	6	232	9.96	6	256	10.68
A∐ir	7	19	3.57	7	55	4.65	7	90	5.7	7	126	6.78	7	162	7.86	7	198	8.94	7	234	10.02	7	256	10.68
nformat	8	19	3.57	8	56	4.68	8	92	5.76	8	128	6.84	8	164	7.92	8	200	9	8	236	10.08	8	256	10.68
All information provided in this	9	20	3.6	9	57	4.71	9	93	5.79	9	129	6.87	9	166	7.98	9	202	9.06	9	239	10.17	9	256	10.68
vided ii	10	21	3.63	10	58	4.74	10	94	5.82	10	131	6.93	10	167	8.01	10	204	9.12	10	241	10.23	10	256	10.68
	11	22	3.66	11	59	4.77	11	95	5.85	11	132	6.96	11	169	8.07	11	206	9.18	11	243	10.29	11	256	10.68
document is subject	12	22	3.66	12	60	4.8	12	97	5.91	12	134	7.02	12	171	8.13	12	208	9.24	12	245	10.35	12	256	10.68
nt is su	13	23	3.69	13	61	4.83	13	98	5.94	13	135	7.05	13	173	8.19	13	210	9.3	13	247	10.41	13	256	10.68
bject to	14	24	3.72	14	62	4.86	14	99	5.97	14	137	7.11	14	174	8.22	14	212	9.36	14	249	10.47	14	256	10.68
legal	15	25	3.75	15	63	4.89	15	100	6	15	138	7.14	15	176	8.28	15	214	9.42	15	252	10.56	15	256	10.68
disclaimers	16	25	3.75	16	64	4.92	16	102	6.06	16	140	7.2	16	178	8.34	16	216	9.48	16	254	10.62	16	256	10.68
ners.	17	26	3.78	17	65	4.95	17	103	6.09	17	141	7.23	17	179	8.37	17	218	9.54	17	256	10.68	17	256	10.68
	18	27	3.81	18	66	4.98	18	104	6.12	18	143	7.29	18	181	8.43	18	220	9.6	18	256	10.68	18	256	10.68
	19	28	3.84	19	66	4.98	19	105	6.15	19	144	7.32	19	183	8.49	19	221	9.63	19	256	10.68	19	256	10.68
	20	29	3.87	20	68	5.04	20	106	6.18	20	145	7.35	20	184	8.52	20	223	9.69	20	256	10.68	20	256	10.68
	21	29	3.87	21	69	5.07	21	108	6.24	21	147	7.41	21	186	8.58	21	225	9.75	21	256	10.68	21	256	10.68
	22	30	3.9	22	70	5.1	22	109	6.27	22	148	7.44	22	188	8.64	22	227	9.81	22	256	10.68	22	256	10.68
0	23	31	3.93	23	71	5.13	23	110	6.3	23	150	7.5	23	190	8.7	23	229	9.87	23	256	10.68	23	256	10.68
NXP B.V. 2010.	24	32	3.96	24	72	5.16	24	111	6.33	24	151	7.53	24	191	8.73	24	231	9.93	24	256	10.68	24	256	10.68
v. 201c	25	32	3.96	25	73	5.19	25	113	6.39	25	153	7.59	25	193	8.79	25	233	9.99	25	256	10.68	25	256	10.68
	26	33	3.99	26	74	5.22	26	114	6.42	26	154	7.62	26	195	8.85	26	235	10.05	26	256		26	256	10.68
All rights reserved	27	34	4.02	27	75	5.25	27	115	6.45	27	156	7.68	27	196	8.88	27	237	10.11	27	256	10.68	27	256	10.68
served.	28	35	4.05	28	76	5.28	28	116	6.48	28	157	7.71	28	198	8.94	28	239	10.17	28	256	10.68	28	256	10.68

Product data sheet

8811_5 oduc	V _{OFF} [000]			V _{OFF} [001]			V _{OFF} [010]		V _{OFF} [011]				V _{OFF} [101]		V _{OFF} [110]			V _{OFF} [111]					
8811_5 oduct data	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)	V _{PR} [5:0]	V _{OP} [7:0]	V _{LCD} (V)
sheet	29	35	4.05	29	77	5.31	29	118	6.54	29	159	7.77	29	200	9	29	241	10.23	29	256	10.68	29	256	10.68
et	30	36	4.08	30	78	5.34	30	119	6.57	30	160	7.8	30	201	9.03	30	243	10.29	30	256	10.68	30	256	10.68
	31	37	4.11	31	79	5.37	31	120	6.66	31	162	7.86	31	203	9.09	31	245	10.35	31	256	10.68	31	256	10.68
	32	38	4.14	32	80	5.4	32	121	6.63	32	163	7.89	32	205	9.15	32	247	10.41	32	256	10.68	32	256	10.68
	33	39	4.17	33	81	5.43	33	123	6.69	33	165	7.95	33	207	9.21	33	249	10.47	33	256	10.68	33	256	10.68
	34	39	4.17	34	82	5.46	34	124	6.72	34	166	7.98	34	208	9.24	34	250	10.5	34	256	10.68	34	256	10.68
	35	40	4.2	35	83	5.49	35	125	6.75	35	167	8.01	35	210	9.3	35	252	10.56	35	256	10.68	35	256	10.68
₽	36	41	4.23	36	84	5.52	36	126	6.78	36	169	8.07	36	212	9.36	36	254	10.62	36	256	10.68	36	256	10.68
	37	42	4.26	37	85	5.55	37	127	6.81	37	170	8.1	37	213	9.39	37	256	10.68	37	256	10.68	37	256	10.68
information	38	42	4.26	38	86	5.58	38	129	6.87	38	172	8.16	38	215	9.45	38	256	10.68	38	256	10.68	38	256	10.68
provided in this Rev. 05 -	39	43	4.29	39	87	5.61	39	130	6.9	39	173	8.19	39	217	9.51	39	256	10.68	39	256	10.68	39	256	10.68
od in thi	40	44	4.32	40	88	5.64	40	131	6.93	40	175	8.25	40	218	9.54	40	256	10.68	40	256	10.68	40	256	10.68
do	41	45	4.35	41	89	5.67	41	132	6.96	41	176	8.28	41	220	9.6	41	256	10.68	41	256	10.68	41	256	10.68
document is sub – 29 June	42	45	4.35	42	90	5.7	42	134	7.02	42	178	8.34	42	222	9.66	42	256	10.68	42	256	10.68	42	256	10.68
ne 2	43	46	4.38	43	91	5.73	43	135	7.05	43	179	8.37	43	224	9.72	43	256	10.68	43	256	10.68	43	256	10.68
subject to legal	44	47	4.41	44	92	5.76	44	136	7.08	44	181	8.43	44	225	9.75	44	256	10.68	44	256	10.68	44	256	10.68
gal disc	45	48	4.44	45	93	5.79	45	137	7.11	45	182	8.46	45	227	9.81	45	256	10.68	45	256	10.68	45	256	10.68
daimer	46	48	4.44	46	94	5.82	46	139	7.17	46	184	8.52	46	229	9.87	46	256	10.68	46	256	10.68	46	256	10.68
į,	47	49	4.47	47	95	5.85	47	140	7.2	47	185	8.55	47	230	9.9	47	256	10.68	47	256	10.68	47	256	10.68
	48	50	4.5	48	96	5.88	48	141	7.23	48	187	8.61	48	232	9.96	48	256	10.68	48	256	10.68	48	256	10.68
	49	51	4.53	49	97	5.91	49	142	7.26	49	188	8.64	49	234	10.02	49	256	10.68	49	256	10.68	49	256	10.68
	50	52	4.56	50	98	5.94	50	143	7.29	50	189	8.67	50	235	10.05	50	256	10.68	50	256	10.68	50	256	10.68
	51	52	4.56	51	99	5.97	51	145	7.35	51	191	8.73	51	237	10.11	51	256	10.68	51	256	10.68	51	256	10.68
	52	53	4.59	52	100	6	52	146	7.38	52	192	8.76	52	239	10.17	52	256	10.68	52	256	10.68	52	256	10.68
© NXP	53	54	4.62	53	101	6.03	53	147	7.41	53	194	8.82	53	241	10.23	53	256	10.68	53	256	10.68	53	256	10.68
B.<	54	55	4.65	54	102	6.06	54	148	7.44	54	195	8.85	54	242	10.26	54	256	10.68	54	256	10.68	54	256	10.68
2010. AI	55	55	4.65	55	103	6.09	55	150	7.5	55	197	8.91	55	244	10.32	55	256	10.68	55	256	10.68	55	256	10.68
All rights r	56	56	4.68	56	104	6.12	56	151	7.53	56	198	8.94	56	246	10.38	56	256	10.68	56	256	10.68	56	256	10.68
reserved.	57	57	4.71	57	105	6.15	57	152	7.56	57	200	9	57	247	10.41	57	256	10.68	57	256	10.68	57	256	10.68

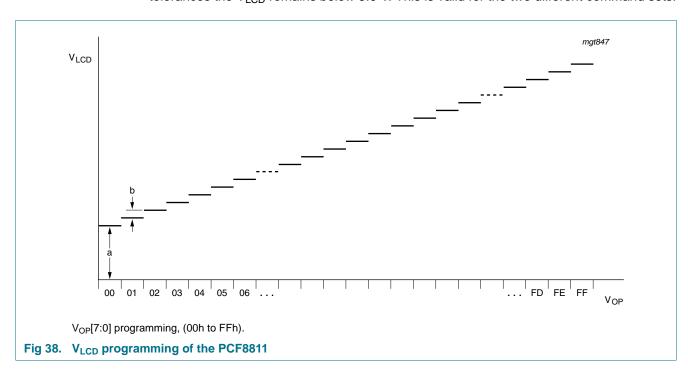
Table 29. ROM look-up table with values of $V_{OFF},\,V_{PR},\,V_{OP}$ and $V_{LCD\,\dots continued}$

80 x 128 pixels matrix LCD driver

80 x 128 pixels matrix LCD driver

12.10.2 Extended command set

The V_{LCD} at $T = T_{CUT}$ is calculated using <u>Equation 5</u>. In the extended command set $V_{PR}[7:0]$ is the same value as $V_{OP}[7:0]$. It can additionally be adjusted with the V_{LCD} offset pads $V_{OS}[4:0]$ to obtain the optimum optical performance.


Instead of using the V_{LCD} offset pads ($V_{OS}[4:0]$) the V_{LCD} can be adjusted with the module maker calibration setting MMVOPCAL[4:0]; see Section 18.

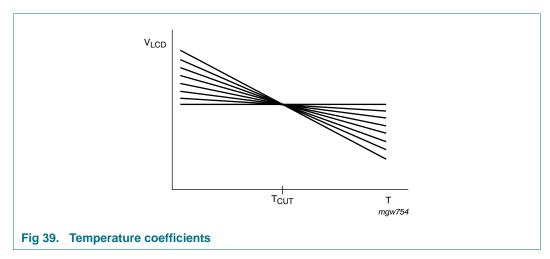
$$V_{LCD(T=T_{CUT})} = a + (V_{OS}[4:0] + V_{OP}[7:0]) \times b$$
 (5)

Where:

- T_{CUT} is a reference temperature; see Section 12.11
- a is a fixed constant value; see Table 28
- b is a fixed constant value; see Table 28
- V_{PR}[7:0] is the programmed V_{OP} value
- V_{OS}[4:0]/MMVOPCAL[4:0] is the value of the offset V_{LCD} pads or the value stored in the OTP cells

As the programming range for the internally generated V_{LCD} allows values above the maximum allowed V_{LCD} (9 V) the user has to ensure while setting the V_{PR} register and selecting the Temperature Compensation (TC), that under all conditions and including all tolerances the V_{LCD} remains below 9.0 V. This is valid for the two different command sets.

80 x 128 pixels matrix LCD driver

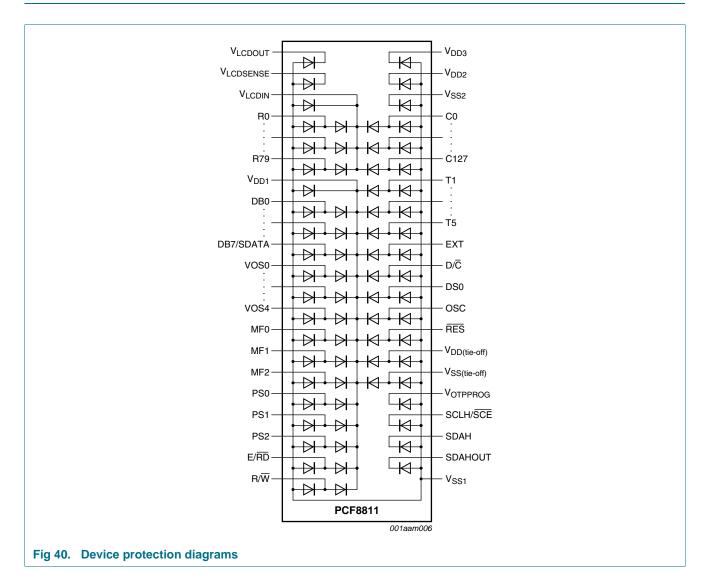

12.11 Temperature control

Due to the temperature dependency of the liquid crystals' viscosity, the LCD controlling voltage V_{LCD} might have to be increased at lower temperatures to maintain optimum contrast.

You can calculate the V_{LCD} at a specific temperature for both command sets. V_{LCD} (at $T = T_{CUT}$) is given by Equation 4 or Equation 5 depending on the command set which is used

$$V_{LCD(T)} = V_{LCD(T = T_{CUT})} \times [1 + (T - T_{CUT}) \times TC]$$
 (6)

In the extended command set and basic command set 8 different temperature coefficients are available; see Figure 39.



The typical values of the different temperature coefficients are given in Section 15. The coefficients are proportional to the programmed V_{LCD} .

The basic and extended command set differ in the way that the temperature coefficients can be accessed. In the basic command set only one temperature coefficient is available. However, the possibility exists to program the default temperature coefficient by means of OTP programming; see Section 18. In the extended command set the different temperature coefficients are selected by the interface with three bits TC[2:0].

80 x 128 pixels matrix LCD driver

13. Internal circuitry

80 x 128 pixels matrix LCD driver

14. Limiting values

Table 30. Limiting values[1]

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V_{DD1}	supply voltage 1	general		-0.5	+6.5	V
V_{DD2}	supply voltage 2	for internal voltage generator	[2]	-0.5	+4.5	V
V_{DD3}	supply voltage 3	for internal voltage generator	[2]	-0.5	+4.5	V
V_{LCD}	LCD supply voltage			-0.5	+10	V
V_i	input voltage			-0.5	+6.5	V
V _{OTPPROG}	voltage applied to pad V _{OTPPROG}			-0.5	+12	V
I _I	input current	DC level		-10	+10	mA
lo	output current	DC level		-10	+10	mA
I _{SS}	ground supply current			-50	+50	mA
P _{tot}	total power dissipation			-	300	mW
P/out	power dissipation per output			-	30	mW
V_{ESD}	electrostatic discharge	HBM	[3]	-	±3000	V
	voltage	MM	[4]	-	±250	V
l _{lu}	latch-up current		<u>[5]</u>	-	200	mΑ
T_{stg}	storage temperature		<u>[6]</u>	-65	+150	°C

^[1] Parameters are valid over the whole operating temperature range unless otherwise specified. All voltages are referenced to V_{SS} unless otherwise specified.

^[2] For the internal voltage multiplier.

^[3] Pass level; Human Body Model (HBM), according to Ref. 5 "JESD22-A114".

^[4] Pass level; Machine Model (MM), according to Ref. 6 "JESD22-A115".

^[5] Pass level; latch-up testing according to Ref. 7 "JESD78" at maximum ambient temperature (T_{amb(max)}).

^[6] According to the NXP store and transport requirements (see Ref. 9 "NX3-00092") the devices have to be stored at a temperature of +8 °C to +45 °C and a humidity of 25 % to 75 %. For long term storage products deviant conditions are described in that document.

80 x 128 pixels matrix LCD driver

15. Static characteristics

Table 31. Static characteristics

 $V_{DD1} = 1.7 \text{ V to } 3.3 \text{ V; } V_{SS} = 0 \text{ V; } V_{LCD} = 3 \text{ V to } 9 \text{ V; } T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C; unless otherwise specified.}$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DD1}	supply voltage 1	general		1.7	-	3.3	V
		basic command set; when using ROM look-up table; see Section 12.10		2	-	3.3	V
V_{DD2}	supply voltage 2	for internal voltage multiplier		1.8	-	3.3	V
V_{DD3}	supply voltage 3	for internal voltage multiplier		1.8	-	3.3	V
V_{LCDIN}	LCD supply voltage	LCD voltage externally supplied (voltage multiplier disabled)		3	-	9	V
V _{LCDOUT}	voltage multiplier output voltage	LCD voltage internally generated (voltage multiplier enabled)	[1]	-	-	9	V
$V_{LCD(tol)}$	tolerance of generated	without calibration		-300	-	+300	mV
	V_{LCD}	with calibration	<u>[2]</u>	-70	-	+70	mV
I_{DD1}	supply current 1	general	[3][4]	0.5	1.5	5	μА
			[4][5]	15	25	50	μА
I_{DD2}	supply current 2	for internal voltage multiplier	[3][4]	0	0.5	1	μΑ
			[4][5]	130	150	200	μΑ
I_{DD3}	supply current 3	for internal voltage multiplier	[3][4]		0.5	1	μΑ
				130	150	200	μΑ
$I_{DD(tot)}$	total supply current	$V_{DD1} + V_{DD2} + V_{DD3}$	[4][5]	145	175	250	μΑ
	outs; MF[2:0], V _{OS} [4:0], D	S0, EXT, PS[2:0], RES and OSC					
Vi	input voltage			$V_{SS}-0.5$		$V_{DD1} + 0.5$	V
V_{IL}	LOW-level input voltage			V_{SS}	-	0.2V _{DD1}	V
V_{IH}	HIGH-level input voltage			0.8V _{DD1}	-	V_{DD1}	V
IL	leakage current	$V_I = V_{DD}$ or V_{SS}		–1	-	+1	μΑ
Column	and row outputs						
R _{col}	column output resistance	C0 to C127; $V_{LCD} = 5 \text{ V}$		-	-	5	$k\Omega$
R_{row}	row output resistance	R0 to R79; $V_{LCD} = 5 \text{ V}$		-	-	5	$k\Omega$
$V_{\text{bias(col)}}$	bias tolerance voltage	C0 to C127		-100	0	+100	mV
V _{bias(row)}	bias tolerance voltage	R0 to R80		-100	0	+100	mV
LCD sup	ply voltage multiplier						
TC0	LCD voltage temperature coefficient 0			-	0	-	¹⁄∞c
TC1	LCD voltage temperature coefficient 1			-	-0.16×10^{-3}	-	¹⁄₀c
TC2	LCD voltage temperature coefficient 2			-	-0.33×10^{-3}	-	¹⁄∞c
TC3	LCD voltage temperature coefficient 3			-	-0.50×10^{-3}	-	½°C
TC4	LCD voltage temperature coefficient 4			-	-0.66×10^{-3}	-	½°C

PCF8811_5

All information provided in this document is subject to legal disclaimers.

80 x 128 pixels matrix LCD driver

Table 31. Static characteristics ... continued

 V_{DD1} = 1.7 V to 3.3 V; V_{SS} = 0 V; V_{LCD} = 3 V to 9 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
TC5	LCD voltage temperature coefficient 5			-	-0.833×10^{-3}	-	¹⁄∞c
TC6	LCD voltage temperature coefficient 6			-	-1.25×10^{-3}	-	¹⁄∞c
TC7	LCD voltage temperature coefficient 7		[6]	-	-1.66×10^{-3}	-	¹⁄∞c
Parallel i	nterface; V _{DD1} = 1.8 V to 3	3.3 V					
Vi	input voltage			-0.5	-	$V_{DD1} + 0.5$	V
V_{IL}	LOW-level input voltage			V_{SS}	-	0.2V _{DD1}	V
V_{IH}	HIGH-level input voltage			0.8V _{DD1}	-	V_{DD1}	V
Serial int	erface; V _{DD1} = 1.7 V to 3.3	3 V					
Vi	input voltage			-0.5	-	$V_{DD1} + 0.5$	V
V_{IL}	LOW-level input voltage			V_{SS}	-	0.2V _{DD1}	V
V_{IH}	HIGH-level input voltage			0.8V _{DD1}	-	V_{DD1}	V
l ² C-bus i	nterface; V _{DD1} = 1.8 V to 3	3.3 V					
Vi	input voltage			-0.5	-	+3.3	V
I _{OL(SDAH)}	LOW-level output current	$V_{OL} = 0.4 \text{ V}; V_{DD1} > 2 \text{ V}$		3	-	-	mΑ
	on pin SDAH	$V_{OL} = 0.2 V_{DD1}; V_{DD1} < 2 V$		2	-	-	mΑ
V_{IL}	LOW-level input voltage			V_{SS}	-	$0.3V_{DD1}$	V
V_{IH}	HIGH-level input voltage			$0.7V_{DD1}$	-	V_{DD1}	V
Output le	evels for all interfaces						
V_{OL}	LOW-level output voltage	$I_{OL} = 0.5 \text{ mA}$		V_{SS}	-	0.2V _{DD1}	V
V_{OH}	HIGH-level output voltage	$I_{OH} = -0.5 \text{ mA}$		0.8V _{DD1}	-	V_{DD1}	V

^[1] The maximum possible V_{LCD} voltage that can be generated is dependent on voltage, temperature and (display) load.

^[2] Valid for values of temperature, V_{PR} and TC used at calibration.

^[3] During power-down all static currents are switched off.

^[4] Conditions are: V_{DD1} = 1.8 V, V_{DD2} = 2.7 V, V_{LCD} = 8.05 V, voltage multiplier 4 × V_{DD2} , inputs at V_{DD1} or V_{SS} , interface inactive, internal V_{LCD} generation, V_{LCD} output is loaded by 10 μ A and T_{amb} = 25 °C.

^[5] Normal mode.

^[6] TC7 can only be used when $V_{DD2} = V_{DD3} = 2.4 \text{ V}$ or higher.

80 x 128 pixels matrix LCD driver

16. Dynamic characteristics

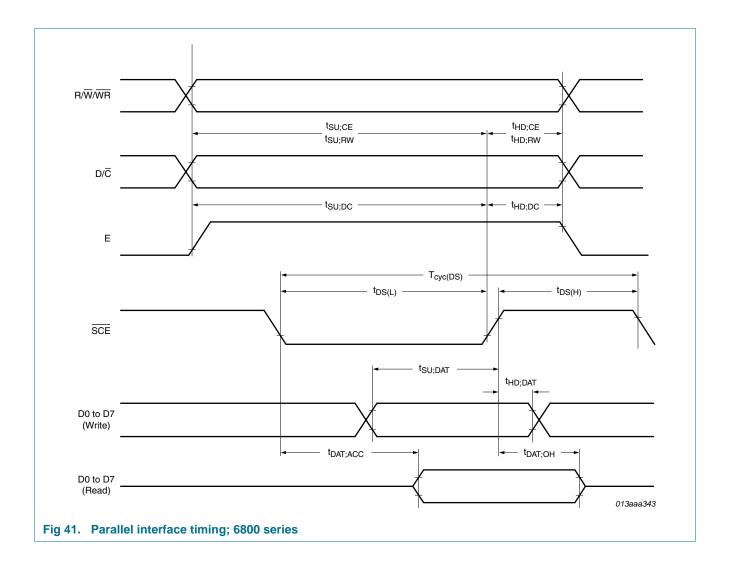
Table 32. Dynamic characteristics[1]

 $V_{DD1} = 1.7 \text{ V to } 3.3 \text{ V; } V_{SS} = 0 \text{ V; } V_{LCD} \le 9 \text{ V; } T_{amb} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C; unless otherwise specified.}$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{ext}	external frequency	external clock		-	200	-	kHz
f _{fr}	frame frequency	T_{amb} = 25 °C; V_{DD1} = 2.4 V		54	60	66	Hz
				43	58	73	Hz
t _{VHRL}	V _{DD} to RES LOW	see Figure 48	[2]	0	-	1	μS
t _{RW}	RES LOW pulse width	see Figure 48		500	-	-	ns

^[1] All specified timings are based on 20 % and 80 % of V_{DD} .

16.1 Parallel interface timing characteristics


Table 33. Parallel interface (6800 series) timing characteristics

 V_{DD1} = 1.8 V to 3.3 V; V_{SS} = 0 V; $V_{LCD} \le 9$ V; T_{amb} = -40 °C to +85 °C; unless otherwise specified; see <u>Figure 41</u>.

Symbol	Parameter	Min	Max	Unit
$t_{\text{SU;DC}}$	data/command set-up time	40	-	ns
$t_{\text{HD;DC}}$	data/command hold time	20	-	ns
$T_{\text{cyc}(DS)}$	data strobe cycle time	1000	-	ns
$t_{DS(L)}$	data strobe LOW time	320	-	ns
t _{DS(H)}	data strobe HIGH time	300	-	ns
t _{SU;RW}	read/write set-up time	280	-	ns
t _{HD;RW}	read/write hold time	20	-	ns
t _{SU;CE}	chip enable set-up time	280	-	ns
t _{HD;CE}	chip enable hold time	0	-	ns
t _{SU;DAT}	data set-up time	20	-	ns
t _{HD;DAT}	data hold time	40	-	ns
t _{DAT;ACC}	data output access time	-	280	ns
t _{DAT;OH}	data output disable time	-	20	ns

^[2] $\overline{\text{RES}}$ can be LOW before V_{DD} goes HIGH.

80 x 128 pixels matrix LCD driver

80 x 128 pixels matrix LCD driver

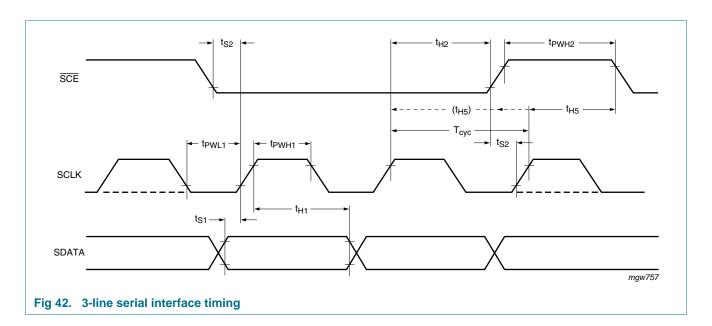
16.2 Serial interface timing characteristics

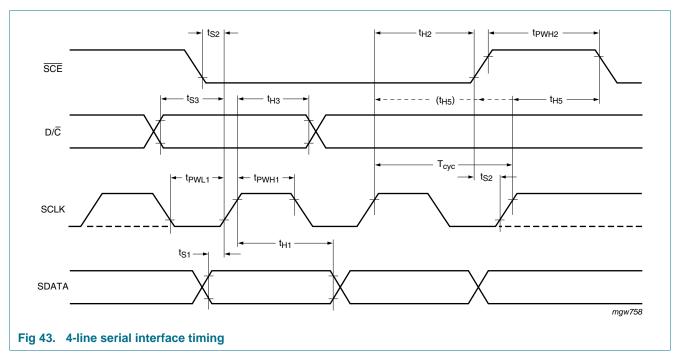
Table 34. Serial interface timing characteristics[1]

 $V_{DD1} = 1.8 \text{ V to } 3.3 \text{ V; } V_{SS} = 0 \text{ V; } V_{LCD} \le 9 \text{ V; } T_{amb} = -40 \text{ °C to } +85 \text{ °C; unless otherwise specified; see } Figure 42, Figure 43, Figure 44 and Figure 45.}$

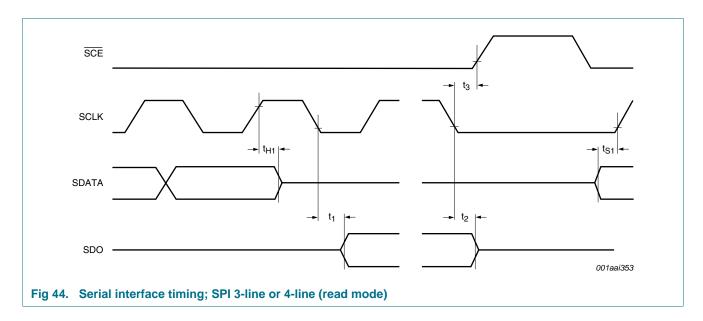
Symbol	Parameter		Min	Max	Unit
f _{SCLK}	clock frequency		9.00	-	MHz
T _{cyc}	clock cycle SCLK		111	-	ns
t _{PWH1}	SCLK pulse width HIGH		45	-	ns
t _{PWL1}	SCLK pulse width LOW		45	-	ns
t _{S2}	SCE set-up time		50	-	ns
t _{H2}	SCE hold time		45	-	ns
t _{PWH2}	SCE minimum HIGH time		50	-	ns
t _{H5}	SCE start hold time	[2]	50	-	ns
t _{S3}	data/command set-up time		50	-	ns
t _{H3}	data/command hold time		50	-	ns
t _{S1}	SDATA set-up time		50	-	ns
t _{H1}	SDATA hold time		50	-	ns
t ₁	SDO access time		-	50	ns
t ₂	SDO disable time	[3]	-	50	ns
t ₃	SCE hold time		50	-	ns
t ₄	SDO disable time	[4]	25	100	ns
C _b	capacitive load for SDO	[5]	-	30	pF
R _b	series resistance for SDO	[5]	-	500	Ω

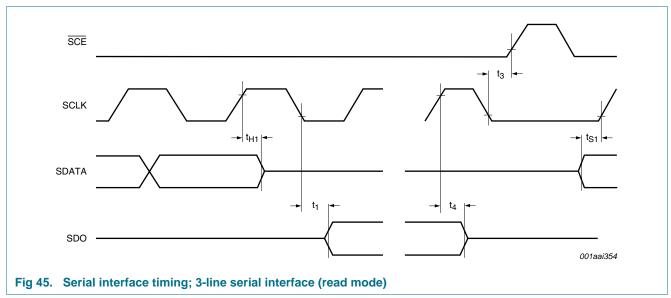
^[1] All specified timings are based on 20 % and 80 % of V_{DD} .


^[2] t_{H5} is the time from the previous SCLK rising edge (irrespective of the state of SCE) to the falling edge of SCE.


^[3] SDO disable time for SPI 3-line or 4-line.

^[4] SDO disable time for 3-line serial interface.


^[5] Maximum values are for f_{SCLK} = 9 MHz. Series resistance includes ITO track + connector resistance + printed-circuit board.


80 x 128 pixels matrix LCD driver

80 x 128 pixels matrix LCD driver

80 x 128 pixels matrix LCD driver

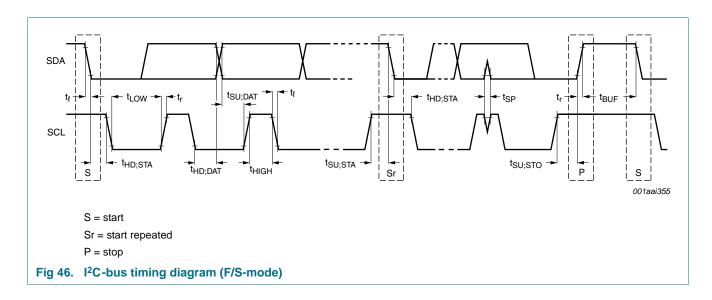

16.3 I²C-bus interface timing characteristics

Table 35. I²C-bus characteristics; F/S-mode

 $V_{DD1} = 1.8 \text{ V to } 3.3 \text{ V; } V_{SS} = 0 \text{ V; } V_{LCD} \le 9 \text{ V; } T_{amb} = -40 \text{ °C to } +85 \text{ °C; } unless otherwise specified (1); see <u>Figure 46</u>.$

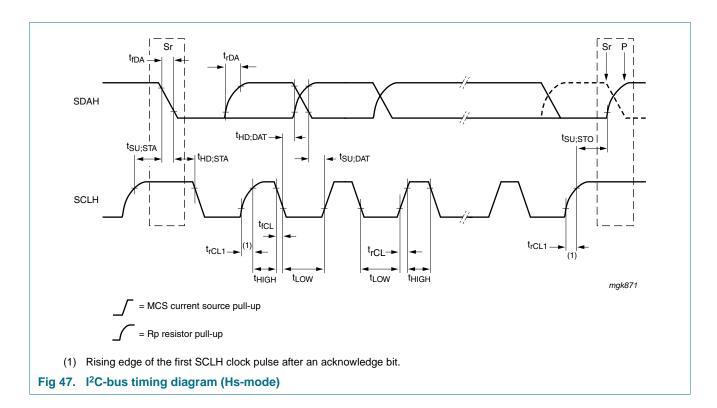
	EOD AIND	· · · · · · · · · · · · · · · · · · ·				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{SCL}	SCL clock frequency		0	-	400	kHz
$t_{\text{SU};\text{STA}}$	set-up time for a repeated START condition		600	-	-	ns
$t_{\text{HD};\text{STA}}$	hold time (repeated) START condition		600	-	-	ns
t_{LOW}	LOW period of the SCL clock		1300	-	-	ns
t _{HIGH}	HIGH period of the SCL clock		600	-	-	ns
$t_{\text{SU;DAT}}$	data set-up time		100	-	-	ns
$t_{\text{HD};\text{DAT}}$	data hold time		0	-	900	ns
t _r	rise time of both SDA and SCL signals		$20 + 0.1C_b$	-	300	ns
t_f	fall time of both SDA and SCL signals		$20 + 0.1C_b$	-	300	ns
C_b	capacitive load for each bus line		-	-	400	pF
$t_{\text{SU;STO}}$	set-up time for STOP condition		600	-	-	ns
t _{SP}	pulse width of spikes that must be suppressed by the input filter		-	-	50	ns
t _{BUF}	bus free time between a STOP and START condition		1300	-	-	ns
V_{nL}	noise margin at the LOW level	for each connected device (including hysteresis)	0.1V _{DD1}	-	-	V
V_{nH}	noise margin at the HIGH level	for each connected device (including hysteresis)	0.2V _{DD1}	-	-	V

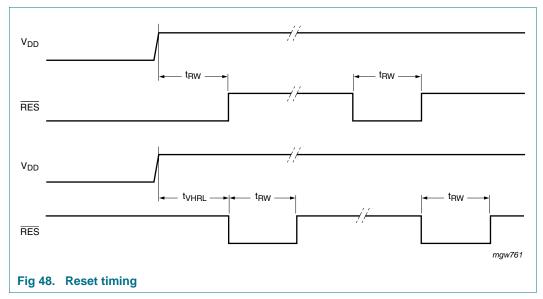
[1] All specified timings are based on 20 % and 80 % of V_{DD} .

80 x 128 pixels matrix LCD driver

Table 36. I²C-bus characteristics; Hs-mode

 $V_{DD1} = 1.8 \text{ V to } 3.3 \text{ V; } V_{SS} = 0 \text{ V; } V_{LCD} \leq 9 \text{ V; } T_{amb} = -40 \text{ °C to } +85 \text{ °C; } unless otherwise specified \ref{L1}; see Figure 47.}$

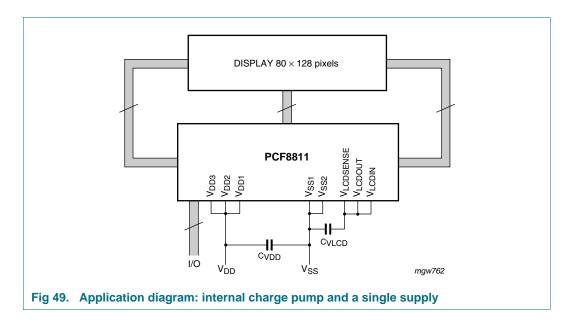

001	, 00 , LOD	, and				<u> </u>	
Symbol	Parameter	Conditions	$C_{b} = 100 \text{ p}$	$C_b = 100 \text{ pF (max)}$		$C_b = 400 \text{ pF}^{2}$	
			Min	Max	Min	Max	
f _{SCLH}	SCLH clock frequency		0	3.4	0	1.7	MHz
t _{SU;STA}	set-up time for a repeated START condition		160	-	160	-	ns
t _{HD;STA}	hold time (repeated) START condition		160	-	160	-	ns
t_{LOW}	LOW period of the SCLH clock		160	-	320	-	ns
t _{HIGH}	HIGH period of the SCLH clock		60	-	120	-	ns
t _{SU;DAT}	data set-up time		10	-	10	-	ns
t _{HD;DAT}	data hold time		20 <mark>[3]</mark>	70	20[3]	150	ns
t _{rCL}	rise time of SCLH signal		10	40	20	80	ns
t _{rCL1}	rise time of SCLH signal after a repeated START condition and after an acknowledge bit		10	80	20	160	ns
t _{fCL}	fall time of SCLH signal		10	40	20	80	ns
t_{rDA}	rise time of SDAH signal		10	80	20	160	ns
t_{fDA}	fall time of SDAH signal		10	80	20	160	ns
t _{SU;STO}	set-up time for STOP condition		160	-	160	-	ns
t _{SP}	pulse width of spikes that must be suppressed by the input filter	SDAH and SCLH	0	5	0	5	ns
C _b	capacitive load for each bus	SDAH and SCLH lines	[2] 0	100	-	400	pF
	line	SDAH + SDA line and SCLH + SCL line	0	400	-	400	pF
V_{nL}	noise margin at the LOW level	for each connected device (including hysteresis)	0.1V _{DD1}	-	0.1V _{DD1}	-	V
V_{nH}	noise margin at the HIGH level	for each connected device (including hysteresis)	0.2V _{DD2}	-	0.2V _{DD2}	-	V

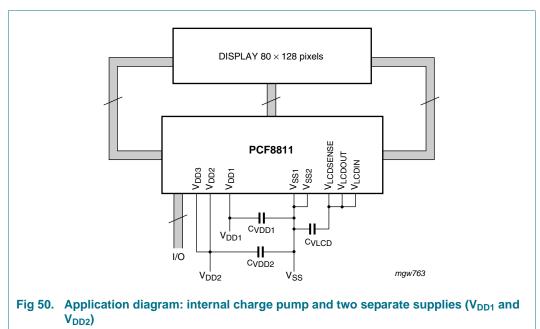

^[1] All specified timings are based on 20 % and 80 % of V_{DD} .

^[2] For bus line loads C_b between 100 pF and 400 pF the timing parameters must be linearly interpolated.

^[3] A device must internally provide a data hold time to bridge the undefined part between V_{IH} and V_{IL} of the falling edge of the SCLH signal. An input circuit with a threshold as low as possible for the falling edge of the SCLH signal minimizes this hold time.

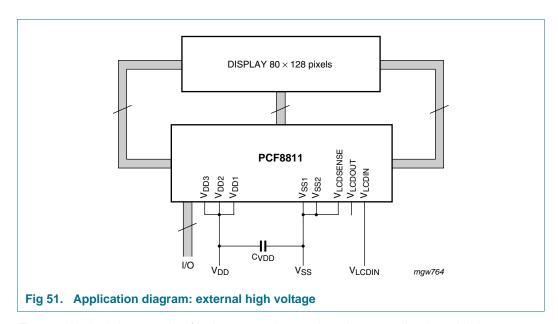
80 x 128 pixels matrix LCD driver


80 x 128 pixels matrix LCD driver


17. Application information

Semiconductors are light sensitive. Exposure to light sources can cause the IC to malfunction. In this application the IC must be protected against light. The protection has to be done on all sides of the IC, i.e. front, rear and all edges.

The pinning of the PCF8811 has an optimum design for single plane wiring e.g. for chip-on-glass display modules. Display size: 80×128 pixels.


For further application information refer to NXP Semiconductors Application Note *AN10170 Design guidelines for COG modules with Philips monochrome LCD drivers.*

PCF8811_5

80 x 128 pixels matrix LCD driver

The required minimum value for the external capacitors in an application with the PCF8811 are:

 C_{VLCD} = 1.0 μF to 4.7 μF depending on the application.

 $C_{VDD},\,C_{VDD1},\,C_{VDD2}$ = 1.0 $\mu F.$ For these capacitors, higher values can be used.

80 x 128 pixels matrix LCD driver

18. Support information

18.1 Module maker programming

One Time Programmable (OTP) technology is implemented on the PCF8811. It enables the module maker to program some extended features of the PCF8811 after it has been assembled on an LCD module. Programming is made under the control of the interfaces and the use of one special pad. This pad must be made available on the module glass but need not be accessed by the set maker.

The PCF8811 features 3 parameters programmable by the module maker:

- V_{LCD} calibration
- Temperature coefficient selection
- Seal bit

18.1.1 V_{LCD} calibration

The first feature included is the ability to adjust the V_{LCD} voltage with a 5-bit code (MMVOPCAL). This code is implemented in two's complement notation giving rise to a positive or negative offset to the V_{PR} register. This is in the same manner as the on-glass calibration pads V_{OS} .

In theory, both may be used together but it is recommended that the V_{OS} pads are tied to V_{SS} when OTP calibration is being used. This sets them to a default offset of zero. If both are used then the addition of the two 5-bit numbers must not exceed a 5-bit result, otherwise the resultant value is undefined. The final adder in the circuit has underflow and overflow protection. In the event of an overflow, the output will be clamped to 255; during an underflow the output will be clamped to 0.

The final control to the high voltage multiplier, V_{OP} , is the sum of all the calibration registers and pads. The V_{LCD} Equation 4 or Equation 5 given in Section 12.10.1 or Section 12.10.2 must be extended to include the OTP calibration, as follows:

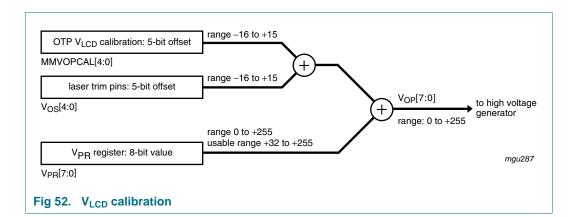
$$V_{LCD(T=T_{CUT})} = a + (V_{OS}[4:0] + MMVOPCAL[4:0] + V_{OP}[7:0]) \times b$$
 (7)

The possible values for MMVOPCAL[4:0] and V_{OS}[4:0] values are given in Table 37.

Table 37. V_{OS}/MMVOPCAL values in two's complement notation

Binary	Decimal	Binary	Decimal
0 0000	0	1 1111	-1
0 0001	+1	1 1110	-2
0 0010	+2	1 1101	-3
0 0011	+3	1 1100	-4
0 0100	+4	1 1011	- 5
0 0101	+5	1 1010	-6
0 0110	+6	1 1001	-7
0 0111	+7	1 1000	-8
0 1000	+8	1 0111	-9
0 1001	+9	1 0110	-10

PCF8811_5


All information provided in this document is subject to legal disclaimers

© NXP B.V. 2010. All rights reserved

80 x 128 pixels matrix LCD driver

iable or .	Vogamin von GAZ varaco in two o complement notationcommada						
Binary	Decimal	Binary	Decimal				
0 1010	+10	1 0101	-11				
0 1011	+11	1 0100	-12				
0 1100	+12	1 0011	-13				
0 1101	+13	1 0010	-14				
0 1110	+14	1 0001	-15				
0 1111	+15	1 0000	-16				

Table 37. V_{OS}/MMVOPCAL values in two's complement notation ...continued

18.1.2 Temperature coefficient selection

The second feature is an OTP factory default setting for the temperature coefficient selection (MMTC) in the basic command set. This 3-bit value will be loaded from OTP after leaving the power-save mode or by the refresh command. The idea of this feature is to provide, in the basic command set, the complete set of temperature coefficients without an additional command. In the extended command set the temperature coefficient can be programmed as given in Table 21 and Table 31.

18.1.3 Seal bit

The module maker programming is performed in a special mode: the calibration mode (CALMM). This mode is entered via a special interface command, CALMM. To prevent unwanted programming, a seal bit has been implemented which prevents the device from entering the calibration mode. This seal bit, once programmed, cannot be reversed so further changes in programmed values are not possible.

Applying the programming voltages when not in CALMM mode has no effect on the programmed values.

Table 38. Seal bit definition

Seal bit	Action
0	possible to enter calibration mode
1	calibration mode disabled

80 x 128 pixels matrix LCD driver

18.1.4 OTP architecture

The OTP circuitry in the PCF8811 contains 9 bits of data: 5 for V_{LCD} calibration (MMVOPCAL), 3 for the temperature coefficient default setting in the basic command set MMTC and 1 seal bit. The circuitry for 1-bit is called an OTP slice. Each OTP slice consists of 2 main parts: the OTP cell (a non-volatile memory cell) and the shift register cell (a flip-flop). The OTP cells are only accessible through their shift register cells: on the one hand both reading from and writing to the OTP cells is performed with the shift register cells, on the other hand only the shift register cells are visible to the rest of the circuit. The basic OTP architecture is shown in Figure 53.

This OTP architecture allows the following operations:

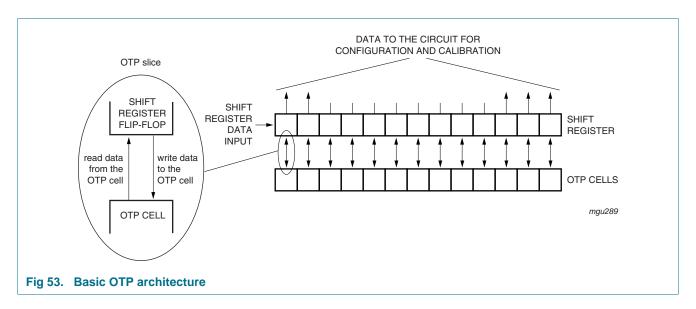
Reading data from the OTP cells — The content of the non-volatile OTP cells is transferred to the shift register where upon it may affect the PCF8811 operation.

Writing data to the OTP cells — All 9 data bits are shifted into the shift register via the interface. The content of the shift register is then transferred to the OTP cells. There are some limitations related to storing data in these cells; see Section 18.1.7.

Checking calibration without writing to the OTP cells — Shifting data into the shift register allows the effects on the V_{LCD} voltage to be observed.

The reading of data from the OTP cells is initiated by either:

- Exit from power-save mode
- The refresh command (power control)


Remark: Note that in both cases the reading operation needs up to 5 ms to complete.

The shifting of data into the shift register is performed in the special mode CALMM. In the PCF8811 the CALMM mode is entered by the CALMM command. Once in the CALMM mode the data is shifted into the shift register via the interface at the rate of 1-bit per command. After transmitting the last (9th) bit and exiting the CALMM mode, the serial interface will return to the normal mode and all other commands can be sent. Care should be taken that 9 bits of data (or a multiple of 9) are always transferred before exiting the CALMM mode, otherwise the bits will be in the wrong positions.

In the shift register the value of the seal bit is, like the others, always zero at reset. To ensure that the security feature (seal bit) works correctly, the CALMM command is disabled until a refresh has been performed. Once the refresh is completed, the seal bit value in the shift register will be valid and permission to enter the CALMM mode can thus be determined.

The 9 bits are shifted into the shift register in a predefined order: first 5 bits of MMVOPCAL[4:0], 3 bits for MMTC[2:0] and lastly the seal bit. The MSB is always first, thus the first bit shifted is MMVOPCAL[4] and the two last bits are MMTC[0] and the seal bit.

80 x 128 pixels matrix LCD driver

18.1.5 Interface commands

These instructions are in addition to those indicated in Table 11.

Table 39. Additional interface commands

Instruction	Pad			Comm	nand by	yte						Description
	EXT	D/C	R/W/WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
CALMM	χ <u>[1]</u>	0	0	1	0	0	0	0	0	1	0	enter CALMM mode
Power control (refresh)	X[1]	0	0	0	0	1	0	1	PC1	PC0	1	switch HVgen on/off to force a refresh of the shift register

[1] X = value without meaning.

18.1.5.1 CALMM

This instruction puts the device in calibration mode. This mode enables the shift register for loading and allows programming of the non-volatile OTP cells to take place. If the seal bit is set then this mode cannot be accessed and the instruction will be ignored. Once in calibration mode all commands are interpreted as shift register data. The mode can only be exited by sending data with DB7 set to logic 0. Reset will also clear this mode. Each shift register data byte is preceded by $D/\overline{C} = 0$ and has only 2 significant bits, thus the remaining 6 bits are ignored. DB7 is the continuation bit (DB7 = 1 remain in CALMM mode, DB7 = 0 exit CALMM mode). DB0 is the data bit and its value is shifted into the OTP shift register (on the falling edge of SCLK).

18.1.5.2 Refresh

The action of the refresh instruction is to force the OTP shift register to re-load from the non-volatile OTP cells. This instruction takes up to 5 ms to complete. During this time all other instructions may be sent.

In the PCF8811 the refresh instruction is associated with the power control instruction so that the shift register is automatically refreshed every time the high voltage multiplier is enabled or disabled. Note that if this instruction is sent while in power-save mode, the PC[1:0] bits are updated but the refreshing is ignored.

80 x 128 pixels matrix LCD driver

18.1.6 Example sequence for filling the shift register

An example of the sequence of commands and data is shown in <u>Table 40</u>. In this example the shift register is filled with the following data: MMVOPCAL = -4 (1 1100b), MMTC = 2 (010b) and the seal bit is logic 0.

It is assumed that the PCF8811 has just been reset. After transmitting the last bit the PCF8811 can either exit or remain in the CALMM mode; see <u>Table 40</u>, Step 1. It should be noted that while in CALMM mode the interface does not recognize commands in the normal sense.

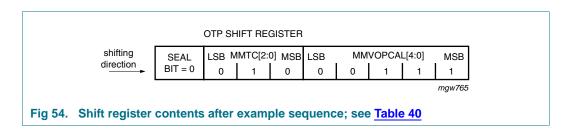

After this sequence has been applied it is possible to observe the impact of the data shifted in. The described sequence is, however, not useful for OTP programming because the number of bits with the value logic 1 is greater than that allowed for programming; see Section 18.1.7. The shift register after this action is shown in Figure 54.

Table 40. Sequence for filling the shift register; example 1[1]

Step	Pad			Comn	nand b	yte						Action
	EXT	D/C	R/W/WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
1	Χ	0	0	1	1	1	0	0	0	0	1	exit power-down
2	-	-	-	-	-	-	-	-	-	-	-	wait 5 ms for refresh to take effect
3	Х	0	0	1	0	0	0	0	0	1	0	enter CALMM mode
4	Х	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	1	shift in data; MMVOPCAL[4] is first bit [2]
5	Х	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	1	MMVOPCAL[3]
6	Х	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	1	MMVOPCAL[2]
7	Χ	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	0	MMVOPCAL[1]
8	Χ	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	0	MMVOPCAL[0]
9	Χ	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	0	MMTC[2]
10	Χ	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	1	MMTC[1]
11	Χ	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	0	MMTC[0]
12	Χ	0	0	0	Χ	Χ	Χ	Χ	Χ	Χ	0	seal bit; exit CALMM mode
An alt	ernativ	e endi	ng could be	e to sta	y in CA	ALMM I	mode					
13	Χ	0	0	1	Х	Χ	Χ	Χ	Χ	Χ	0	seal bit; remain in CALMM mode

^[1] X = value without meaning.

^[2] The data for the bits is not in the correct shift register position until all bits have been sent.

18.1.7 Programming flow

Programming is achieved whilst in CALMM mode and with the application of the programming voltages. As mentioned previously, the data for programming the OTP cell is contained in the corresponding shift register cell. The shift register cell must be loaded

PCF8811_5

80 x 128 pixels matrix LCD driver

with a logic 1 in order to program the corresponding OTP cell. If the shift register cell contains a logic 0, then no action will take place when the programming voltages are applied.

Once programmed, an OTP cell cannot be de-programmed. An already programmed cell, i.e. an OTP cell containing a logic 1, must not be re-programmed.

During programming, a substantial current flows in the V_{LCDIN} pad. For this reason it is recommended to program only one OTP cell at a time by filling all but one shift register cells with logic 0.2

It should be noted that the programming specification refers to the voltages at the chip pads, contact resistance must therefore be considered by the user.

An example sequence of commands and data for OTP programming is given in <u>Table 41</u>. It is assumed that the PCF8811 has just been reset.

The order for programming cells is not significant. However, NXP Semiconductors recommends that the seal bit is programmed last. Once this bit has been programmed and the CALMM mode is exited, it is not possible to re-enter the CALMM mode.

Table 41. Sequence for filling the shift register; example 2[1]

Step	Pad			Comi	mand	byte						Action
	EXT	D/C	R/W/WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	_
1	Х	0	0	1	1	1	0	0	0	0	1	exit power-save
2	-	-	-	-	-	-	-	-	-	-	-	wait 5 ms for refresh to take effect
3	Χ	0	0	1	0	1	0	1	0	0	1	re-enter power-down (DON = 0)
4	Χ	0	0	1	0	0	0	0	0	1	0	enter CALMM mode
5	Χ	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	1	shift in data; MMVOPCAL[4] is first bit
6	Χ	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	1	MMVOPCAL[3]
7	Χ	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	1	MMVOPCAL[2]
9	Χ	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	0	MMVOPCAL[1]
10	Χ	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	0	MMVOPCAL[0]
11	Χ	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	0	MMTC[2]
12	Χ	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	1	MMTC[1]
13	Χ	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	0	MMTC[0]
14	Χ	0	0	1	Χ	Χ	Χ	Χ	Χ	Χ	0	seal bit
15	-	-	-	-	-	-	-	-	-	-	-	apply programming voltage at pads V_{OTPPROG} and V_{LCDIN} ; see Section 18.1.8
Repe	at step	s 5 to	14 (9 bits,	see S	ection	18.1.4) for ea	ach bit	which	must b	e prog	grammed to 1; exit CALMM mode
16	-	-	-	-	-	-	-	-	-	-	-	apply external reset

^[1] X =value without meaning.

PCF8811_

^{2.} The examples in Table 40 and Table 41 are not in line with this recommendation since more than one cell is set to 1 at a time.

80 x 128 pixels matrix LCD driver

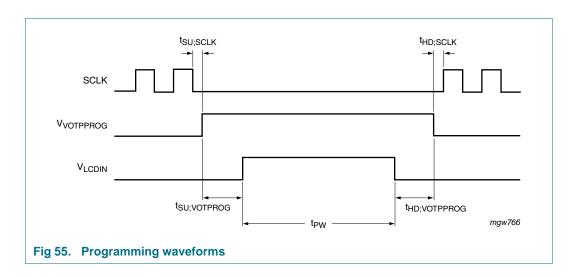

18.1.8 Programming specification

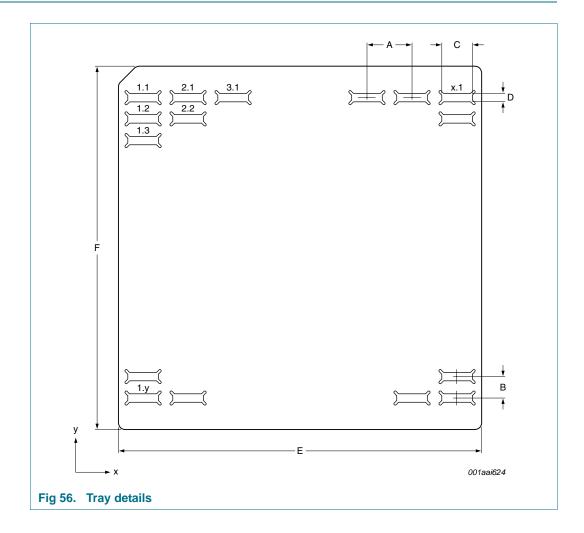
Table 42. Programming specification See *Figure 55.*

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$V_{OTPPROG}$	voltage applied to pad $V_{\mbox{\scriptsize OTPPROG}}$	programming active	<u>[1]</u>	11	11.5	12	V
	relative to V _{SS1}	programming inactive	<u>[1]</u>	$V_{SS}-0.2$	0	$V_{SS} + 0.2$	V
V_{LCDIN}	voltage applied to pad V _{LCDIN}	programming active	[1][2]	9	9.5	10	V
	relative to V _{SS1}	programming inactive	[1][2]	$V_{DD2}-0.2$	V_{DD2}	4.5	V 2 V
I _{LCDIN}	current drawn by V _{LCDIN} during programming	when programming a single bit to logic 1		-	850	1000	mA
I _{VOTPPROG}	current drawn by V _{OTPPROG} during programming			-	100	200	mA
T _{amb(PROG)}	ambient temperature during programming			0	25	40	°C
t _{SU;SCLK}	set-up time of internal data after last clock			1	-	-	μS
t _{HD;SCLK}	hold time of internal data before next clock			1	-	-	μS
t _{SU;VOTPPROG}	set-up time of V _{OTPPROG} prior to programming			1	-	10	μS
t _{HD;VOTPPROG}	hold time of V _{OTPPROG} after programming			1	-	10	ms
t _{PW}	pulse width of programming voltage			100	120	200	ms

^[1] The voltage drop across the ITO track and zebra connector must be taken into account to guarantee a sufficiently high voltage at the chip pads.

^[2] The power-down mode (DON = 0 and DAL = 1) and CALMM mode must be active while the V_{LCDIN} pad is being driven.

80 x 128 pixels matrix LCD driver


19. Package outline

Not applicable.

20. Handling information

All input and output pins are protected against ElectroStatic Discharge (ESD) under normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that all normal precautions are taken as described in *JESD625-A*, *IEC 61340-5* or equivalent standards.

21. Packing information

80 x 128 pixels matrix LCD driver

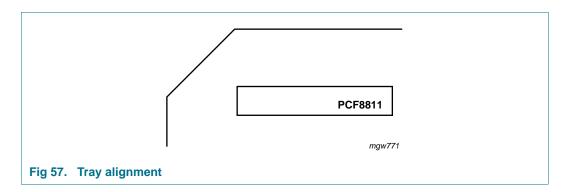


Table 43. Tray dimensions

See Figure 56.

Symbol	Description	Value
A	pocket pitch in x direction	20.12 mm
В	pocket pitch in y direction	4.09 mm
С	pocket width in x direction	12.55 mm
D	pocket width in y direction	2.41 mm
E	tray width in x direction	50.8 mm
F	tray width in y direction	50.8 mm
X	number of pockets, x direction	2
у	number of pockets, y direction	11

The orientation of the IC in a pocket is indicated by the position of the IC type name on the die surface with respect to the chamfer on the upper left corner of the tray. Refer to the bonding pad location diagram (Figure 2) for the orientation and position of the type name on the die surface.

80 x 128 pixels matrix LCD driver

22. Abbreviations

Table 44. Abbreviations

Description
Charged Device Model
Complementary Metal-Oxide Semiconductor
Chip-On-Glass
Double Data Random Access Memory
ElectroStatic Discharge
Human Body Model
High Voltage
Integrated Circuit
Indium Tin Oxide
Liquid Crystal Display
Least Significant Bit
Machine Model
Multiple Row Addressing
Most Significant Bit
MicroProcessing Unit
One Time Programmable
Random Access Memory
Serial Peripheral Interface
Temperature Coefficient
Tape Carrier Packages

80 x 128 pixels matrix LCD driver

23. References

- [1] AN10170 Design guidelines for COG modules with NXP monochrome LCD drivers
- [2] AN10706 Handling bare die
- [3] IEC 60134 Rating systems for electronic tubes and valves and analogous semiconductor devices
- [4] IEC 61340-5 Protection of electronic devices from electrostatic phenomena
- [5] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)
- [6] **JESD22-A115** Electrostatic Discharge (ESD) Sensitivity Testing Machine Model (MM)
- [7] JESD78 IC Latch-Up Test
- [8] **JESD625-A** Requirements for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices
- [9] NX3-00092 NXP store and transport requirements
- [10] UM10204 I²C-bus specification and user manual

Product data sheet

83 of 88

PCF8811 NXP Semiconductors

80 x 128 pixels matrix LCD driver

24. Revision history

Table 45. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PCF8811_5	20100629	Product data sheet	-	PCF8811_4
Modifications:		of this data sheet has been niconductors.	redesigned to comply wi	th the new identity guidelines
	 Legal texts 	have been adapted to the r	new company name whe	re appropriate.
	 Deleted Fa 	b 1 information.		
	 Improved d 	escription to the I ² C-bus.		
	 Corrected I 	² C-bus spec in <u>Table 31</u> .		
	 Updated Fi 	<u>gure 40</u> .		
	 Added ESE 	values to <u>Table 30</u> .		
	 Adjusted tra 	ay information.		
PCF8811_4	20080627	Product data sheet	-	PCF8811_3
PCF8811_3	20040517	Product specification	-	PCF8811_2
PCF8811_2	20021204	Product specification	-	PCF8811_1
PCF8811_1	20020814	Product specification	-	-
-				

80 x 128 pixels matrix LCD driver

25. Legal information

25.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

25.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

25.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

PCF8811 5

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

80 x 128 pixels matrix LCD driver

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Bare die — All die are tested on compliance with their related technical specifications as stated in this data sheet up to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and

transportation conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers.

NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used.

All die sales are conditioned upon and subject to the customer entering into a written die sale agreement with NXP Semiconductors through its legal department.

25.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

26. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Product data sheet

86 of 88

80 x 128 pixels matrix LCD driver

27. Contents

1	General description	. 1	8.1.2.2	Data order	21
2	Features and benefits	. 1	8.1.2.3	Features available in both command sets	22
3	Applications	. 2	9	Parallel interface	25
4	Ordering information	. 2	9.1	6800 series parallel interface	25
5	Block diagram		10	Serial interfacing (SPI and serial interface) .	26
6	Pinning information		10.1	Serial peripheral interface lines	26
6.1	Pinning		10.1.1	Write mode	
6.2	Pin description		10.1.2	Read mode (only extended command set)	
7	Functional description		10.2	Serial interface (3-line)	
7 .1	Pad functions		10.2.1	Write mode	
7.1.1 7.1.1	R0 to R79: row driver outputs		10.2.2	Read mode (only extended command set)	
7.1.1	C0 to C127: column driver signals		11	I ² C-bus interface	
7.1.2	V_{SS1} and V_{SS2} : negative power supply rails		11.1	Characteristics of the I ² C-bus	
7.1.4	V _{DD1} to V _{DD3} : positive power supply rails		11.1.1	System configuration	31
7.1.5	V _{OTPPROG} : OTP power supply		11.1.2	Bit transfer	
7.1.6	V _{LCDOUT} , V _{LCDIN} , and V _{LCDSENSE} : LCD		11.1.3	START and STOP conditions	
	power supply	15	11.1.4	Acknowledge	
7.1.7	T1 to T5: test pads		11.2	I ² C-bus protocol	
7.1.8	MF2 to MF0		11.3	I ² C-bus Hs-mode protocol	
7.1.9	DS0	16	11.4	Command decoder	
7.1.10	V _{OS4} to V _{OS0}	16	12	Instructions	
7.1.11	EXT: extended command set	16	12.1	Instruction set commands	43
7.1.12	PS <u>0</u> , PS1 and PS2	16	12.1.1	Common instructions of the basic and	
7.1.13	D/ <u>C</u>			extended command set	43
7.1.14	R/ <u>W/</u> WR		12.1.2	Specific commands of the basic	
7.1.15	E/RD		40.40	command set	44
7.1.16	SCLH/SCE		12.1.3	Specific commands of the extended	45
7.1.17	SDAH		12.2	command set	
7.1.18	SDAHOUT		12.2 12.3	Initialization	_
7.1.19	DB7 to DB0		12.3.1	Basic command set	_
7.1.19.1	'' '		12.3.1	Extended command set	
7.1.19.2	,		12.3.2	Power-save mode	
7.1.19.3 7.1.20	(12.5	Display control	
7.1.20	OSC: oscillator		12.5.1	Bit MX	
7.1.21	Block diagram functions		12.5.2	Bit MY	
7.2.1	Address counter		12.6	Set Y address of RAM	
7.2.1	Display data RAM		12.7	Set X address of RAM	
7.2.3	Timing generator		12.8	Set display start line	
7.2.4	Display address counter		12.9	Bias levels	
7.2.5	LCD row and column drivers		12.10	Set V _{OP} value	
8	Addressing		12.10.1	Basic command set	
8 .1	Display data RAM structure		12.10.2	Extended command set	57
8.1.1	Basic command set		12.11	Temperature control	58
8.1.2	Extended command set		13	Internal circuitry	59
8121	Horizontal/vertical addressing		14	Limiting values	

continued >>

PCF8811 NXP Semiconductors

80 x 128 pixels matrix LCD driver

15	Static characteristics	61
16	Dynamic characteristics	63
16.1	Parallel interface timing characteristics	63
16.2	Serial interface timing characteristics	65
16.3	I ² C-bus interface timing characteristics	68
17	Application information	71
18	Support information	73
18.1	Module maker programming	73
18.1.1	V _{LCD} calibration	73
18.1.2	Temperature coefficient selection	74
18.1.3	Seal bit	74
18.1.4	OTP architecture	75
18.1.5	Interface commands	76
18.1.5.1	CALMM	76
18.1.5.2		76
18.1.6	Example sequence for filling the shift register	77
18.1.7	Programming flow	77
18.1.8	Programming specification	79
19	Package outline	80
20	Handling information	80
21	Packing information	80
22	Abbreviations	82
23	References	83
24	Revision history	84
25	Legal information	85
25.1	Data sheet status	85
25.2	Definitions	85
25.3	Disclaimers	85
25.4	Trademarks	86
26	Contact information	86
27	Contents	87

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.